A sub k(B)T/q semimetal nanowire field effect transistor

Show simple item record

dc.contributor.author Ansari, Lida
dc.contributor.author Fagas, Georgios
dc.contributor.author Gity, Farzan
dc.contributor.author Greer, James C.
dc.date.accessioned 2020-10-09T15:51:34Z
dc.date.available 2020-10-09T15:51:34Z
dc.date.issued 2016-08-09
dc.identifier.citation Ansari, L., Fagas, G., Gity, F. and Greer, J. C. (2016) 'A sub kBT/q semimetal nanowire field effect transistor', Applied Physics Letters, 109(6), 063108 (5 pp). doi: 10.1063/1.4960709 en
dc.identifier.volume 109 en
dc.identifier.startpage 1 en
dc.identifier.endpage 5 en
dc.identifier.issn 0003-6951
dc.identifier.uri http://hdl.handle.net/10468/10649
dc.identifier.doi 10.1063/1.4960709 en
dc.description.abstract The key challenge for nanoelectronics technologies is to identify the designs that work on molecular length scales, provide reduced power consumption relative to classical field effect transistors (FETs), and that can be readily integrated at low cost. To this end, a FET is introduced that relies on the quantum effects arising for semimetals patterned with critical dimensions below 5 nm, that intrinsically has lower power requirements due to its better than a "Boltzmann tyranny" limited subthreshold swing (SS) relative to classical field effect devices, eliminates the need to form heterojunctions, and mitigates against the requirement for abrupt doping profiles in the formation of nanowire tunnel FETs. This is achieved through using a nanowire comprised of a single semimetal material while providing the equivalent of a heterojunction structure based on shape engineering to avail of the quantum confinement induced semimetal-to-semiconductor transition. Ab initio calculations combined with a non-equilibrium Green's function formalism for charge transport reveals tunneling behavior in the OFF state and a resonant conduction mechanism for the ON state. A common limitation to tunnel FET (TFET) designs is related to a low current in the ON state. A discussion relating to the semimetal FET design to overcome this limitation while providing less than 60 meV/dec SS at room temperature is provided. en
dc.description.sponsorship Science Foundation Ireland and Higher Education Authority (SFI/HEA Irish Centre for High-End Computing (ICHEC)) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri https://aip.scitation.org/doi/10.1063/1.4960709
dc.rights © 2016, AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Appl. Phys. Lett. 109, 063108 (2016) and may be found at https://aip.scitation.org/doi/10.1063/1.4960709 en
dc.subject Ab initio calculations en
dc.subject Electrical conductivity en
dc.subject Field effect transistors en
dc.subject Nanoelectronics en
dc.subject Nanowires en
dc.subject Semiconductor heterojunctions en
dc.subject Semimetals en
dc.subject Tunnel transistors en
dc.subject Tunnelling en
dc.title A sub k(B)T/q semimetal nanowire field effect transistor en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Farzan Gity, Tyndall Photonics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: farzan.gity@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2020-10-09T15:42:49Z
dc.description.version Published Version en
dc.internal.rssid 524063626
dc.internal.wokid WOS:000383183600045
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Higher Education Authority en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Applied Physics Letters en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress farzan.gity@tyndall.ie en
dc.identifier.articleid 063108 en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/13/IA/1956/IE/SMALL: Semi-Metal ALL-in-One Technologies/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement