Electronic structure of lonsdaleite SixGe1−x alloys

Show simple item record

dc.contributor.author Broderick, Christopher A.
dc.date.accessioned 2020-11-12T11:14:06Z
dc.date.available 2020-11-12T11:14:06Z
dc.date.issued 2020-10-08
dc.identifier.citation Broderick, C. A. (2020) 'Electronic structure of lonsdaleite SixGe1-x alloys', Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Turin, Italy, 14-18 September, pp. 3-4. doi: 10.1109/NUSOD49422.2020.9217637 en
dc.identifier.startpage 3 en
dc.identifier.endpage 4 en
dc.identifier.isbn 978-1-7281-6086-3
dc.identifier.isbn 978-1-7281-6087-0
dc.identifier.issn 2158-3234
dc.identifier.uri http://hdl.handle.net/10468/10752
dc.identifier.doi 10.1109/NUSOD49422.2020.9217637 en
dc.description.abstract Conventional diamond-structured silicon (Si) and germanium (Ge) possess indirect fundamental band gaps, limiting their potential for applications in light-emitting devices. However, SixGe1-x alloys grown in the lonsdaleite ("hexagonal diamond") phase have recently emerged as a promising directgap, Si-compatible material system, with experimental measurements demonstrating strong room temperature photoluminescence. When grown in the lonsdaleite phase, Ge possesses a narrow (0:3 eV) "pseudo-direct"fundamental band gap. Lonsdaleite Si is indirect-gap (0:8 eV), creating the possibility to achieve direct-gap lonsdaleite SixGe1-x alloys across a Gerich composition range. We present a first principles analysis of the electronic and optical properties of lonsdaleite SixGe1-x alloys, elucidate the electronic structure evolution and direct-to indirect-gap transition, and describe the impact of alloy band mixing effects on inter-band optical transition strengths. en
dc.description.sponsorship National University of Ireland (NUl Post-Doctoral Fellowship in the Sciences) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) en
dc.relation.uri https://www.nusod.org/2020/
dc.rights © 2020, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. en
dc.subject Electronic en
dc.subject Optical en
dc.subject lonsdaleite SixGe1-x alloys en
dc.subject Ab initio calculations en
dc.subject Energy gap en
dc.subject Ge-Si alloys en
dc.subject Optical constants en
dc.subject Photoluminescence en
dc.title Electronic structure of lonsdaleite SixGe1−x alloys en
dc.type Conference item en
dc.internal.authorcontactother Christopher Broderick, Tyndall Photonics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: christopher.broderick@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2020-11-12T10:50:12Z
dc.description.version Accepted Version en
dc.internal.rssid 543634587
dc.contributor.funder National University of Ireland en
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.conferencelocation Online from Turin, Italy en
dc.internal.IRISemailaddress christopher.broderick@ucc.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/15/IA/3082/IE/Multiscale Simulation and Analysis of emerging Group IV and III-V Semiconductor Materials and Devices/ en
dc.identifier.eissn 2158-3242


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement