Electrode-molecule energy level offsets in a gold-benzene diamine-gold single molecule tunnel junction.

Show simple item record

dc.contributor.author Szepieniec, Mark S.
dc.contributor.author Greer, James C.
dc.date.accessioned 2020-11-13T11:23:31Z
dc.date.available 2020-11-13T11:23:31Z
dc.date.issued 2020-11-02
dc.identifier.citation Szepieniec, M. S. and Greer, J. C. (2020) 'Electrode-molecule energy level offsets in a gold-benzene diamine-gold single molecule tunnel junction', Journal of Chemical Physics, 153(17), 174104 (10pp). doi: 10.1063/5.0024567 en
dc.identifier.volume 153 en
dc.identifier.issued 17 en
dc.identifier.startpage 1 en
dc.identifier.endpage 10 en
dc.identifier.issn 0021-9606
dc.identifier.uri http://hdl.handle.net/10468/10753
dc.identifier.doi 10.1063/5.0024567 en
dc.description.abstract One means for describing electron transport across single molecule tunnel junctions (MTJs) is to use density functional theory (DFT) in conjunction with a nonequilibrium Green's function formalism. This description relies on interpreting solutions to the Kohn-Sham (KS) equations used to solve the DFT problem as quasiparticle (QP) states. Many practical DFT implementations suffer from electron self-interaction errors and an inability to treat charge image potentials for molecules near metal surfaces. For MTJs, the overall effect of these errors is typically manifested as an overestimation of electronic currents. Correcting KS energies for self-interaction and image potential errors results in MTJ current-voltage characteristics in close agreement with measured currents. An alternative transport approach foregoes a QP picture and solves for a many-electron wavefunction on the MTJ subject to open system boundary conditions. It is demonstrated that this many-electron method provides similar results to the corrected QP picture for electronic current. The analysis of these two distinct approaches is related through corrections to a junction's electronic structure beyond the KS energies for the case of a benzene diamine molecule bonded between two gold electrodes. en
dc.description.sponsorship U.S. Department of Energy (Contract No. DE-AC02-05CH11231); University of Nottingham, Ningbo, China (New Materials Institute); National Natural Science Foundation of China (Project Code 61974079) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.rights © 2020, the Authors. Published under license by AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author(s) and AIP Publishing. This article appeared as: Szepieniec, M. S. and Greer, J. C. (2020) 'Electrode-molecule energy level offsets in a gold-benzene diamine-gold single molecule tunnel junction', Journal of Chemical Physics, 153(17), 174104 (10pp), doi: 10.1063/5.0024567, and may be found at https://doi.org/10.1063/5.0024567 en
dc.subject Benzene diamine molecule en
dc.subject Molecule tunnel junctions en
dc.subject Density functional theory en
dc.title Electrode-molecule energy level offsets in a gold-benzene diamine-gold single molecule tunnel junction. en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother James Greer, Pensioners, University College Cork, Cork, Ireland. +353-21-490-3000 Email: jim.greer@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 12 months after publication by request of the publisher. en
dc.check.date 2021-11-02
dc.date.updated 2020-11-11T09:43:12Z
dc.description.version Published Version en
dc.internal.rssid 543511876
dc.internal.pmid 33167633
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder U.S. Department of Energy en
dc.contributor.funder National Natural Science Foundation of China en
dc.contributor.funder University of Nottingham en
dc.contributor.funder University of Nottingham, Ningbo, China en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Chemical Physics en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress jim.greer@tyndall.ie en
dc.identifier.articleid 174104 en
dc.identifier.eissn 1089-7690


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement