JavaScript is disabled for your browser. Some features of this site may not work without it.
The submission of new items to CORA is currently unavailable due to a repository upgrade. For further information, please contact cora@ucc.ie. Thank you for your understanding.
Citation:Noor-A-Rahim, M., Liu, Z., Guan, Y. L. and Hanzo, L. (2020) 'Finite-Length Performance Analysis of LDPC Coded Continuous Phase Modulation', IEEE Transactions on Vehicular Technology, 69(10), pp. 12277-12280. doi: 10.1109/TVT.2020.3012727
Serial concatenation of LDPC codes and continuous phase modulation (CPM) has recently gained significant attention due to its capacity-approaching performance, efficient detection as well as owing to its constant-envelope nature. Most of the previous contributions on LDPC coded CPM were devoted to the design of LDPC codes and their asymptotic performance analysis. However, there is a paucity of work on the finite-length performance estimation of LDPC coded CPM, primarily because existing performance estimation techniques cannot be readily applied to the LDPC coded CPM. To fill this gap, we conceive an analytical bit error probability estimation technique for finite-length LDPC coded CPM in the waterfall region. Numerical results are provided both for regular and irregular LDPC codes having different codeword lengths, demonstrating that the estimated performances are closely matched by the simulated ones.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement