Stability of adsorbed water on TiO2-TiN interfaces. A first-principles and ab initio thermodynamics investigation

Show simple item record

dc.contributor.author Gutiérrez Moreno, José Julio
dc.contributor.author Fronzi, Marco
dc.contributor.author Lovera, Pierre
dc.contributor.author O'Riordan, Alan
dc.contributor.author Nolan, Michael
dc.date.accessioned 2021-08-23T13:11:48Z
dc.date.available 2021-08-23T13:11:48Z
dc.date.issued 2018-06-11
dc.identifier.citation Gutiérrez Moreno, J. J., Fronzi, M., Lovera, P., O'Riordan, A. and Nolan, M. (2018) 'Stability of adsorbed water on TiO2-TiN interfaces. A first-principles and ab initio thermodynamics investigation', Journal of Physical Chemistry C, 122(27), pp. 15395-15408. doi: 10.1021/acs.jpcc.8b03520 en
dc.identifier.volume 122 en
dc.identifier.issued 27 en
dc.identifier.startpage 15395 en
dc.identifier.endpage 15408 en
dc.identifier.issn 1932-7447
dc.identifier.uri http://hdl.handle.net/10468/11770
dc.identifier.doi 10.1021/acs.jpcc.8b03520 en
dc.description.abstract Titanium nitride (TiN) surfaces can oxidize, and the growth of a TiOx layer on the surface along with the likely presence of water in the surrounding environment can modify the properties of this widely used coating material. The present density functional theory study, including Hubbard + U correction (DFT+U), investigates the stability of adsorbed water at TiO2-TiN interfaces with different defects that serve as a model for an oxide layer grown on a TiN surface. Surface free energy calculations show the stability of a perfect TiN-TiO2 interface at regular O pressures, while oxygen vacancy-rich TiO1.88-TiN is more favorable at reducing conditions. An isolated water is preferentially adsorbed dissociatively at perfect and oxygen -defective interfaces, while molecular adsorption is more stable at higher coverages. The adsorption energy is stronger at the oxygen-defective interfaces which arise from the high concentration of reduced Ti3+ and strong interfacial atomic relaxations. Ab initio atomistic thermodynamics show that water will be present at high coverage on TiO2-TiN interfaces at ambient conditions, and the pristine interface is only stable at very low pressure of O and H2O. The results of these DFT+U simulations are important for the fundamental understanding of wettability of interfacial systems involving metal oxides. en
dc.description.sponsorship Environmental Protection Agency (UisceSense project W-2015-MS-21) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher ACS Publications en
dc.rights © 2018, American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, after technical editing by the publisher. To access the final edited and published work see: https://doi.org/10.1021/acs.jpcc.8b03520 en
dc.subject Sputtered titanium nitride en
dc.subject Augmented-wave method en
dc.subject Clay brick facade en
dc.subject Oxygen vacancies en
dc.subject Biomedical applications en
dc.subject Oxidation mechanism en
dc.subject TiN thin films en
dc.subject Density functional theory en
dc.subject Van der Waals en
dc.subject CeO2 en
dc.title Stability of adsorbed water on TiO2-TiN interfaces. A first-principles and ab initio thermodynamics investigation en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2021-08-23T12:58:40Z
dc.description.version Accepted Version en
dc.internal.rssid 448247622
dc.internal.wokid WOS:000439003600039
dc.contributor.funder Environmental Protection Agency en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Physical Chemistry C en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.identifier.eissn 1932-7455


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement