Citation:Dangić, D., Murray, E. D., Fahy, S. and Savić, I. (2020) Structural and thermal transport properties of ferroelectric domain walls in GeTe from first principles, Physical Review B., 101, 184110 ( 10 pp). doi: 10.1103/PhysRevB.101.184110
Ferroelectric domain walls are boundaries between regions with different polarization orientations in a ferroelectric material. Using first-principles calculations, we characterize all different types of domain walls forming on (11¯1), (111), and (1¯10) crystallographic planes in thermoelectric GeTe. We find large structural distortions in the vicinity of most of these domain walls, which are driven by polarization variations. We show that such strong strain-order parameter coupling will considerably reduce the lattice thermal conductivity of GeTe samples containing domain walls with respect to a single crystal. Our results thus suggest that domain engineering is a promising path for enhancing the thermoelectric figure of merit of GeTe.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement