A highly miniaturized wireless inertial sensor using a novel 3D flexible circuit

Show simple item record

dc.contributor.author Buckley, John
dc.contributor.author O'Flynn, Brendan
dc.contributor.author Barton, John
dc.contributor.author Ó Mathúna, S. Cian
dc.date.accessioned 2010-04-14T16:36:24Z
dc.date.available 2010-04-14T16:36:24Z
dc.date.issued 2009-07
dc.identifier.citation Buckley, J., O'Flynn, B., Barton, J., O'Mathuna, S.C., 2009. A highly miniaturized wireless inertial sensor using a novel 3D flexible circuit. Microelectronics International, 26(3), pp.9-21. doi: 10.1108/13565360910981517 en
dc.identifier.volume 26 en
dc.identifier.issued 3 en
dc.identifier.startpage 9 en
dc.identifier.endpage 21 en
dc.identifier.issn 1356-5362
dc.identifier.uri http://hdl.handle.net/10468/156
dc.identifier.doi 10.1108/13565360910981517
dc.description.abstract Purpose - The purpose of this paper is to develop a highly miniaturized wireless inertial sensor system based on a novel 3D packaging technique using a flexible printed circuit (FPC). The device is very suitable for wearable applications in which small size and lightweight are required such as body area network, medical, sports and entertainment applications.Design/methodology/approach - Modern wireless inertial measurement units are typically implemented on a rigid 2D printed circuit board (PCB). The design concept presented here is based around the use of a novel planar, six-faceted, crucifix or cross-shaped FPC instead of a rigid PCB. A number of specific functional blocks (such as microelectromechanical systems gyroscope and accelerometer sensors, microcontroller (MCU), radio transceiver, antenna, etc.) are first assigned to each of the six faces which are each 1 cm2 in area. The FPC cross is then developed into a 1 cm3, 3D configuration by folding the cross at each of five bend planes. The result is a low-volume and lightweight, 1 cm3 wireless inertial sensor that can sense and send motion sensed data wirelessly to a base station. The wireless sensor device has been designed for low power operation both at the hardware and software levels. At the base station side, a radio receiver is connected to another MCU unit, which sends received data to a personal computer (PC) and graphical user interface. The industrial, scientific and medical band (2.45 GHz) is used to achieve half duplex communication between the two sides.Findings - A complete wireless sensor system has been realized in a 3D cube form factor using an FPC. The packaging technique employed during the work is shown to be efficient in fabricating the final cubic system and resulted in a significant saving in the final size and weight of the system. A number of design issues are identified regarding the use of FPC for implementing the 3D structure and the chosen solutions are shown to be successful in dealing with these issues.Research limitations/implications - Currently, a limitation of the system is the need for an external battery to power the sensor system. A second phase of development would be required to investigate the possibility of the integration of a battery and charging system within the cube structure. In addition, the use of flexible substrate imposes a number of restrictions in terms of the ease of manufacturability of the final system due to the requirement of the required folding step.Practical implications - The small size and weight of the developed system is found to be extremely useful in different deployments. It would be useful to further explore the system performance in different application scenarios such as wearable motion tracking applications. In terms of manufacturability, component placement needs to be carefully considered, ensuring that there is sufficient distance between the components, bend planes and board edges and this leads to a slightly reduced usable area on the printed circuit.Originality/value - This paper provides a novel and useful method for realizing a wireless inertial sensor system in a 3D package. The value of the chosen approach is that a significant reduction in the required system volume is achieved. In particular, a 78.5 per cent saving in volume is obtained in decreasing the module size from a 25 to a 15 mm3 size. en
dc.description.sponsorship Science Foundation Ireland (CSET - Centre for Science, Engineering and Technology); Enterprise Ireland (Proof-of-Concept project PC/2005/229) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Emerald Group Publishing Limited en
dc.relation.uri http://www.emeraldinsight.com/10.1108/13565360910981517
dc.rights © Emerald Group Publishing Limited en
dc.subject Medical and body area network applications en
dc.subject.lcsh Printed circuits en
dc.subject.lcsh Wireless sensor networks en
dc.subject.lcsh Microelectromechanical systems en
dc.title A highly miniaturized wireless inertial sensor using a novel 3D flexible circuit en
dc.type Article (non peer-reviewed) en
dc.internal.authorcontactother John Buckley, Tyndall National Institute, Lee Maltings, Cork, Ireland. Email: john.buckley@tyndall.ie en
dc.internal.authorcontactother Brendan O'Flynn, Microelectronics Applications Integration Group, Tyndall National Institute, Lee Maltings, Cork, Ireland. Email: brendan.oflynn@tyndall.ie en
dc.internal.authorcontactother John Barton, Microelectronics Applications Integration Group, Tyndall National Institute, Lee Maltings, Cork, Ireland. Email: john.barton@tyndall.ie en
dc.internal.authorcontactother S. Cian O'Mathuna, Microelectronics Applications Integration Group, Tyndall National Institute, Lee Maltings, Cork, Ireland. Email: cian.omathuna@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2010-04-14T16:12:37Z
dc.description.version Accepted Version en
dc.internal.rssid 12012375
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Enterprise Ireland en
dc.description.status Not peer reviewed en
dc.identifier.journaltitle Microelectronics International en
dc.internal.IRISemailaddress cian.omathuna@tyndall.ie en

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement