Photochemistry of 2-butenedial and 4-oxo-2-pentenal under atmospheric boundary layer conditions

Loading...
Thumbnail Image
Files
c8cp06437g1.pdf(2.67 MB)
Supplementary Information
Date
2018-12-21
Authors
Newland, Mike J.
Rea, Gerard J.
Thüner, Lars P.
Henderson, Alistair P.
Golding, Bernard T.
Rickard, Andrew R.
Barnes, Ian
Wenger, John
Journal Title
Journal ISSN
Volume Title
Publisher
Royal Society of Chemistry
Research Projects
Organizational Units
Journal Issue
Abstract
Unsaturated 1,4-dicarbonyl compounds, such as 2-butenedial and 4-oxo-2-pentenal are produced in the atmospheric boundary layer from the oxidation of aromatic compounds and furans. These species are expected to undergo rapid photochemical processing, affecting atmospheric composition. In this study, the photochemistry of (E)-2-butenedial and both E and Z isomers of 4-oxo-2-pentenal was investigated under natural sunlight conditions at the large outdoor atmospheric simulation chamber EUPHORE. Photochemical loss rates, relative to j(NO2), are determined to be j((E)-2-butenedial)/j(NO2) = 0.14 (±0.02), j((E)-4-oxo-2-pentenal)/j(NO2) = 0.18 (±0.01), and j((Z)-4-oxo-2-pentenal)/j(NO2) = 0.20 (±0.03). The major products detected for both species are a furanone (30–42%) and, for (E)-2-butenedial, maleic anhydride (2,5-furandione) (12–14%). The mechanism appears to proceed predominantly via photoisomerization to a ketene–enol species following γ-H abstraction. The lifetimes of the ketene–enol species in the dark from 2-butenedial and 4-oxo-2-pentenal are determined to be 465 s and 235 s, respectively. The ketene–enol can undergo ring closure to yield the corresponding furanone, or further unimolecular rearrangement which can subsequently form maleic anhydride. A minor channel (10–15%) also appears to form CO directly. This is presumed to be via a molecular elimination route of an initial biradical intermediate formed in photolysis, with an unsaturated carbonyl (detected here but not quantified) as co-product. α-Dicarbonyl and radical yields are very low, which has implications for ozone production from the photo-oxidation of unsaturated 1,4-dicarbonyls in the boundary layer. Photochemical removal is determined to be the major loss process for these species in the boundary layer with lifetimes of the order of 10–15 minutes, compared to >3 hours for reaction with OH.
Description
Keywords
2-butenedial and 4-oxo-2-pentenal , Atmospheric boundary layer conditions , Photochemistry
Citation
Newland, M. J., Rea, G. J., Thüner, L. P., Henderson, A. P., Golding, B. T., Rickard, A. R., Barnes, I. and Wenger, J. (2019) 'Photochemistry of 2-butenedial and 4-oxo-2-pentenal under atmospheric boundary layer conditions', Physical Chemistry Chemical Physics, 2(3), pp.1160-1171. Available at: https://doi.org/10.1039/C8CP06437G
Link to publisher’s version
Copyright
© 2018, the Authors. Published by the Royal Society of Chemistry.