A first principles investigation of Bi2O3-modified TiO2 for visible light activated photocatalysis: the role of TiO2 crystal form and the Bi3+ stereochemical lone pair

Show simple item record

dc.contributor.author Lucid, Aoife K.
dc.contributor.author Iwaszuk, Anna
dc.contributor.author Nolan, Michael
dc.date.accessioned 2014-09-02T11:47:31Z
dc.date.available 2014-09-02T11:47:31Z
dc.date.issued 2014-09
dc.identifier.citation LUCID, A., IWASZUK, A. & NOLAN, M. 2014. A first principles investigation of Bi2O3-modified TiO2 for visible light Activated photocatalysis: The role of TiO2 crystal form and the Bi3+ stereochemical lone pair. Materials Science in Semiconductor Processing, 25, 59-67. DOI: http://dx.doi.org/10.1016/j.mssp.2014.01.005 en
dc.identifier.volume 25 en
dc.identifier.startpage 59 en
dc.identifier.endpage 67 en
dc.identifier.issn 1369-8001
dc.identifier.uri http://hdl.handle.net/10468/1645
dc.identifier.doi 10.1016/j.mssp.2014.01.005
dc.description.abstract Modification of TiO2 with metal oxide nanoclusters is a novel strategy for the design of new photocatalysts with visible light activity. This paper presents a first principles density functional theory (DFT) analysis of the effect of modifying TiO2 rutile (110) and anatase (101) and (001) surfaces with Bi2O3 nanoclusters on the band gap and the nature of the photoexcited state. We show that band gap modifications over unmodified TiO2 depend on the crystal form: modifying rutile (110) results in new Bi2O3 derived states that shift the valence band upwards. On anatase surfaces, there is little effect due to modification with Bi2O3 nanoclusters, but an enhanced UV activity would be expected. Analysis of electron and hole localisation in a model photoexcited state shows enhanced charge separation in Bi2O3-modified rutile (110) but not in Bi2O3-modified anatase. The effect of the Bi3+ lone-pair on the properties of Bi2O3-modified TiO2 contrasts with SnO-modified TiO2, consistent with the weaker lone pair in Bi2O3 compared with SnO. en
dc.description.sponsorship Higher Education Authority (Irish Centre for High End Computing); Science Foundation Ireland (Starting Investigator Research Grant Program, project “EMOIN”, Grant no. SFI 09/SIRG/I1620); Science Foundation Ireland (Irish Centre for High End Computing ); European Commission (European Union FP7 Research Infrastructures Program PRACE, through the DECI-8 program, contracts RI-261557 and RI-283493); European Commission (COST Action CM1104 “Reducible Oxide Chemistry, Structure and Functions”) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Elsevier en
dc.relation.uri http://www.sciencedirect.com/science/article/pii/S1369800114000080
dc.rights Copyright © 2014 Elsevier Inc. All rights reserved. NOTICE: this is the author’s version of a work that was accepted for publication in Materials Science In Semiconductor Processing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Materials Science In Semiconductor Processing [Volume 25, September 2014, Pages 59–67] http://dx.doi.org/10.1016/j.mssp.2014.01.005 en
dc.subject Photocatalysis en
dc.subject TiO2 en
dc.subject Bi2O3 en
dc.subject Lone pair en
dc.subject Density functional theory en
dc.subject Energy gap en
dc.title A first principles investigation of Bi2O3-modified TiO2 for visible light activated photocatalysis: the role of TiO2 crystal form and the Bi3+ stereochemical lone pair en
dc.type Article (peer-reviewed) en
dc.internal.authorurl http://www.tyndall.ie en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2014-04-08T12:50:29Z
dc.description.version Accepted Version en
dc.internal.rssid 250721668
dc.contributor.funder Higher Education Authority en
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Materials Science In Semiconductor Processing en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement