Photonic integrated circuit for the manipulation of coherent optical combs

Show simple item record

dc.contributor.advisor Peters, Frank H. en Cotter, William Edward 2015-08-17T11:33:58Z 2014 2014
dc.identifier.citation Cotter, W. E. 2014. Photonic integrated circuit for the manipulation of coherent optical combs. PhD Thesis, University College Cork. en
dc.description.abstract Photonic integration has become an important research topic in research for applications in the telecommunications industry. Current optical internet infrastructure has reached capacity with current generation dense wavelength division multiplexing (DWDM) systems fully occupying the low absorption region of optical fibre from 1530 nm to 1625 nm (the C and L bands). This is both due to an increase in the number of users worldwide and existing users demanding more bandwidth. Therefore, current research is focussed on using the available telecommunication spectrum more efficiently. To this end, coherent communication systems are being developed. Advanced coherent modulation schemes can be quite complex in terms of the number and array of devices required for implementation. In order to make these systems viable both logistically and commercially, photonic integration is required. In traditional DWDM systems, arrayed waveguide gratings (AWG) are used to both multiplex and demultiplex the multi-wavelength signal involved. AWGs are used widely as they allow filtering of the many DWDM wavelengths simultaneously. However, when moving to coherent telecommunication systems such as coherent optical frequency division multiplexing (OFDM) smaller FSR ranges are required from the AWG. This increases the size of the device which is counter to the miniaturisation which integration is trying to achieve. Much work was done with active filters during the 1980s. This involved using a laser device (usually below threshold) to allow selective wavelength filtering of input signals. By using more complicated cavity geometry devices such as distributed feedback (DFB) and sampled grating distributed Bragg gratings (SG-DBR) narrowband filtering is achievable with high suppression (>30 dB) of spurious wavelengths. The active nature of the devices also means that, through carrier injection, the index can be altered resulting in tunability of the filter. Used above threshold, active filters become useful in filtering coherent combs. Through injection locking, the coherence of the filtered wavelengths with the original comb source is retained. This gives active filters potential application in coherent communication system as demultiplexers. This work will focus on the use of slotted Fabry-Pérot (SFP) semiconductor lasers as active filters. Experiments were carried out to ensure that SFP lasers were useful as tunable active filters. In all experiments in this work the SFP lasers were operated above threshold and so injection locking was the mechanic by which the filters operated. Performance of the lasers under injection locking was examined using both single wavelength and coherent comb injection. In another experiment two discrete SFP lasers were used simultaneously to demultiplex a two-line coherent comb. The relative coherence of the comb lines was retained after demultiplexing. After showing that SFP lasers could be used to successfully demultiplex coherent combs a photonic integrated circuit was designed and fabricated. This involved monolithic integration of a MMI power splitter with an array of single facet SFP lasers. This device was tested much in the same way as the discrete devices. The integrated device was used to successfully demultiplex a two line coherent comb signal whilst retaining the relative coherence between the filtered comb lines. A series of modelling systems were then employed in order to understand the resonance characteristics of the fabricated devices, and to understand their performance under injection locking. Using this information, alterations to the SFP laser designs were made which were theoretically shown to provide improved performance and suitability for use in filtering coherent comb signals. en
dc.description.sponsorship Science Foundation Ireland (Grant 10/CE/I1853) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher University College Cork en
dc.rights © 2014, William E. Cotter en
dc.rights.uri en
dc.subject Photonics en
dc.subject Lasers en
dc.subject Optics en
dc.title Photonic integrated circuit for the manipulation of coherent optical combs en
dc.type Doctoral thesis en
dc.type.qualificationlevel Doctoral en
dc.type.qualificationname PhD (Science) en
dc.internal.availability Full text not available en Indefinite en 10000-01-01
dc.description.version Accepted Version
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Centre for Telecommunications Value Chain Research (CTVR), Trinity College Dublin en
dc.description.status Not peer reviewed en Physics en Tyndall National Institute en
dc.check.type No Embargo Required
dc.check.reason No embargo required en
dc.check.opt-out Yes en
dc.thesis.opt-out true
dc.check.embargoformat Not applicable en
dc.internal.conferring Autumn Conferring 2014

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

© 2014, William E. Cotter Except where otherwise noted, this item's license is described as © 2014, William E. Cotter
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement