Flat surfaces of finite type in the 3-sphere

Show simple item record

dc.contributor.advisor Kilian, Martin en
dc.contributor.author McCarthy, Alan
dc.date.accessioned 2015-08-20T15:29:12Z
dc.date.issued 2014
dc.date.submitted 2014
dc.identifier.citation McCarthy, A. 2014. Flat surfaces of finite type in the 3-sphere. PhD Thesis, University College Cork. en
dc.identifier.endpage 87
dc.identifier.uri http://hdl.handle.net/10468/1935
dc.description.abstract We introduce the notion of flat surfaces of finite type in the 3- sphere, give the algebro-geometric description in terms of spectral curves and polynomial Killing fields, and show that finite type flat surfaces generated by curves on S2 with periodic curvature functions are dense in the space of all flat surfaces generated by curves on S2 with periodic curvature functions. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher University College Cork en
dc.rights © 2014, Alan McCarthy. en
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/ en
dc.subject Differential geometry en
dc.subject Finite gap en
dc.subject Flat tori en
dc.title Flat surfaces of finite type in the 3-sphere en
dc.type Doctoral thesis en
dc.type.qualificationlevel Doctoral en
dc.type.qualificationname PhD (Arts) en
dc.internal.availability Full text available en
dc.description.version Accepted Version
dc.description.status Not peer reviewed en
dc.internal.school Mathematics en
dc.check.reason This thesis is due for publication or the author is actively seeking to publish this material en
dc.check.opt-out No en
dc.thesis.opt-out false
dc.check.embargoformat E-thesis on CORA only en
ucc.workflow.supervisor m.kilian@ucc.ie
dc.internal.conferring Autumn Conferring 2014


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2014, Alan McCarthy. Except where otherwise noted, this item's license is described as © 2014, Alan McCarthy.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement