The inverse limit of GIT quotients of Grassmannians by the maximal torus

Show simple item record

dc.contributor.advisor Mustata, Andrei en
dc.contributor.advisor Mustata, Anca en Yazdanpanah, Vahid 2016-01-07T12:59:46Z 2016-01-07T12:59:46Z 2015 2015
dc.identifier.citation Yazdanpanah, V. 2015. The inverse limit of GIT quotients of Grassmannians by the maximal torus. PhD Thesis, University College Cork. en
dc.identifier.endpage 109
dc.description.abstract There are finitely many GIT quotients of 𝐺(3 𝑛) by maximal torus and between each two there is a birational map. These GIT quotients and the flips between them form an inverse system. This thesis describes this inverse system first and then, describes the inverse limit of this inverse system as a moduli space. An open set in this scheme represents the functor of arrangements of lines in planes. We show how to enrich this functor such that it is represented by the above inverse limit. en
dc.description.sponsorship Science Foundation Ireland (Grant 08/RFP/MATH1759 Research Frontiers Programme) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher University College Cork en
dc.rights © 2015, Vahid Yazdanpanah. en
dc.rights.uri en
dc.subject GIT quotients en
dc.title The inverse limit of GIT quotients of Grassmannians by the maximal torus en
dc.type Doctoral thesis en
dc.type.qualificationlevel Doctoral en
dc.type.qualificationname PhD (Science) en
dc.internal.availability Full text available en No embargo required en
dc.description.version Accepted Version
dc.contributor.funder Science Foundation Ireland en
dc.description.status Not peer reviewed en Mathematics en
dc.check.type No Embargo Required
dc.check.reason No embargo required en
dc.check.opt-out Not applicable en
dc.thesis.opt-out false
dc.check.embargoformat Not applicable en
dc.internal.conferring Spring Conferring 2016 en

Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2015, Vahid Yazdanpanah. Except where otherwise noted, this item's license is described as © 2015, Vahid Yazdanpanah.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement