Epitaxial lateral overgrowth of AlN on self-assembled patterned nanorods

Show simple item record

dc.contributor.author Conroy, Michele
dc.contributor.author Zubialevich, Vitaly Z.
dc.contributor.author Li, Haoning
dc.contributor.author Petkov, Nikolay
dc.contributor.author Holmes, Justin D.
dc.contributor.author Parbrook, Peter J.
dc.date.accessioned 2016-02-02T14:56:12Z
dc.date.available 2016-02-02T14:56:12Z
dc.date.issued 2014-11-13
dc.identifier.citation CONROY, M., ZUBIALEVICH, V. Z., LI, H., PETKOV, N., HOLMES, J. D. & PARBROOK, P. J. 2015. Epitaxial lateral overgrowth of AlN on self-assembled patterned nanorods. Journal of Materials Chemistry C, 3, 431-437. http://dx.doi.org/10.1039/C4TC01536C en
dc.identifier.volume 3 en
dc.identifier.issued 2 en
dc.identifier.startpage 431 en
dc.identifier.endpage 437 en
dc.identifier.issn 2050-7526
dc.identifier.uri http://hdl.handle.net/10468/2241
dc.identifier.doi 10.1039/c4tc01536c
dc.description.abstract We report an inexpensive nanoscale patterning process for epitaxial lateral overgrowth (ELOG) in AlN layers grown by metal organic vapour phase epitaxy (MOVPE) on sapphire. The pattern was produced by an inductively coupled plasma etch using a self-assembled monolayer of silica spheres on AlN as the lithographic mask. The resulting uniform 1 [small mu ]m length rod structure across a wafer showed a massive reduction in threading dislocations (TDs) when annealed at 1100 [degree]C. Overgrowing homoepitaxial AlN on top of the nanorods, at a temperature of 1100 [degree]C, produced a crack free coalesced film with approximately 4 [small mu ]m of growth, which is formed at a much lower temperature compared to that typically required for microscale ELOG. The improved crystal quality, in terms of TD reduction, of the AlN above the rods was determined by detailed weak beam (WB) electron microscopy studies and showed that the threading dislocation density (TDD) was greatly reduced, by approximately two orders of magnitude in the case for edge-type dislocations. In situ reflectance measurements during the overgrowth allowed for thickness coalescence to be estimated along with wafer curvature changes. The in situ measurements also confirmed that tensile strain built up at a much slower rate in the ELOG AlN layer compared to that of AlN prepared directly on sapphire. en
dc.description.sponsorship Higher Education Authority (Programme for Research in Third Level Institutions Cycles 4 and 5 via the INSPIRE and TYFFANI projects); Science Foundation Ireland (SFI Grant no. SFI/10/IN.1/I2993), SFI Professorship scheme (07/EN/E001A)); Irish Government's Programme for Research in Third Level Institutions Cycle 5, National Development Plan 2007–2013 with the assistance of the European Regional Development Fund. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Royal Society of Chemistry en
dc.rights © The Royal Society of Chemistry 2015 en
dc.subject Epitaxial growth en
dc.subject Film growth en
dc.subject Inductively coupled plasma en
dc.subject Lithography en
dc.subject Metallorganic vapor phase epitaxy en
dc.subject Nanorods en
dc.subject Organometallics en
dc.subject Sapphire en
dc.subject Self assembled monolayers en
dc.subject Tensile strain en
dc.subject Epitaxial lateral overgrowth en
dc.subject In-situ measurement en
dc.subject Metal-organic vapour phase epitaxy en
dc.subject Nanoscale patterning en
dc.subject Orders of magnitude en
dc.subject Situ reflectance measurements en
dc.subject Threading dislocation en
dc.subject Threading dislocation densities en
dc.subject Edge dislocations en
dc.title Epitaxial lateral overgrowth of AlN on self-assembled patterned nanorods en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Justin D. Holmes, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: j.holmes@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2014-12-15T11:14:45Z
dc.description.version Accepted Version en
dc.internal.rssid 282719403
dc.contributor.funder Higher Education Authority en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder European Commission en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Materials Chemistry C en
dc.internal.copyrightchecked No. !!CORA!! "Accepted manuscripts may be distributed via repositories after an embargo period of 12 months." http://www.rsc.org/journals-books-databases/open-access/green-open-access/ http://www.rsc.org/journals-books-databases/journal-authors-reviewers/licences-copyright-permissions/ en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress j.holmes@ucc.ie en

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement