Full text restriction information:Access to this article is restricted until 12 months after publication by the request of the publisher.
Restriction lift date:2017-01-26
Citation:O’CONNELL, J., COLLINS, G., MCGLACKEN, G. P., DUFFY, R. & HOLMES, J. D. 2016. Monolayer Doping of Si with Improved Oxidation Resistance. ACS Applied Materials & Interfaces, 8, 4101-4108. http://dx.doi.org/10.1021/acsami.5b11731
In this article, the functionalization of planar silicon with arsenic- and phosphorus-based azides was investigated. Covalently bonded and well-ordered alkyne-terminated monolayers were prepared from a range of commercially available dialkyne precursors using a well-known thermal hydrosilylation mechanism to form an acetylene-terminated monolayer. The terminal acetylene moieties were further functionalized through the application of copper-catalyzed azide–alkyne cycloaddition (CuAAC) reactions between dopant-containing azides and the terminal acetylene groups. The introduction of dopant molecules via this method does not require harsh conditions typically employed in traditional monolayer doping approaches, enabling greater surface coverage with improved resistance toward reoxidation. X-ray photoelectron spectroscopy studies showed successful dialkyne incorporation with minimal Si surface oxidation, and monitoring of the C 1s and N 1s core-level spectra showed successful azide–alkyne cycloaddition. Electrochemical capacitance–voltage measurements showed effective diffusion of the activated dopant atoms into the Si substrates.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement