JavaScript is disabled for your browser. Some features of this site may not work without it.
The submission of new items to CORA is currently unavailable due to a repository upgrade. For further information, please contact cora@ucc.ie. Thank you for your understanding.
Full text restriction information:Access to this item is restricted until 12 months after publication by the request of the publisher.
Restriction lift date:2017-04-19
Citation:Kosmala, A., Fitzgerald, M., Moore, E. and Stam, F. (2016) 'Evaluation of a Gelatin Modified Poly(ɛ-Caprolactone) Film as a Scaffold for Lung Disease', Analytical Letters, 50(1), pp. 219-232. doi: 10.1080/00032719.2016.1163363
Lung transplantation is a necessary step for the patients with the end-stage of chronic obstructive pulmonary disease. The use of artificial lungs is a promising alternative to natural lung transplantation which is complicated and is restricted by low organ donations. For successful lung engineering, it is important to choose the correct combination of specific biological cells and a synthetic carrier polymer. The focus of this study was to investigate the interactions of human lung epithelial cell line NCl-H292 that is involved in lung tissue development with the biodegradable poly(ϵ-caprolactone) before and after its chemical modification to evaluate potential for use in artificial lung formation. Also, the effect of polymer chemical modification on its mechanical and surface properties has been investigated. The poly(ϵ-caprolactone) surface was modified using aminolysis followed by immobilization of gelatine. The unmodified and modified polymer surfaces were characterized for roughness, tensile strength, and NCl-H292 metabolic cell activity. The results showed for the first time the possibility for NCI-H292 cells to adhere on this polymeric material. The Resazurin assay showed that the metabolic activity at 24 hours post seeding of 80% in the presence of the unmodified and greater than 100% in the presence of the modified polymer was observed. The roughness of the poly(ϵ-caprolactone) increased from 4 nm to 26 nm and the film strength increased from 0.01 kN to 0.045 kN when the material was chemically modified. The results obtained to date show potential for using modified poly(ϵ-caprolactone) as a scaffold for lung tissue engineering.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement