Civil and Environmental Engineering - Journal articles

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 186
  • Item
    Tidal stream energy potential in the Shannon Estuary
    (Elsevier Ltd., 2021-12-18) Fouz, D. M.; Carballo, R.; López, I.; Iglesias, Gregorio; European Regional Development Fund; Xunta de Galicia
    The tidal and river in-stream energy resource in the Shannon Estuary (W Ireland) is investigated using of high-resolution numerical modelling and spatial analysis. Although freshwater discharges are large, their influence on the available resource is found to be all but negligible, the tide being the main driver of estuarine circulation. The Tidal Stream Exploitability (TSE) index is adapted to the analysis of estuaries with non-depth-limited areas (TSEndl), such as the Shannon Estuary, and then used to select the hotspots with potential for a tidal stream farm. For this purpose, a new depth penalty-limiting function is defined to avoid overestimating the available energy potential in areas with depths greater than those required for tidal energy converter operation. Seven hotspots are identified based on the revised index. The approach followed in this study illustrates the applicability of high-resolution numerical modelling and spatial analysis for identifying the most appropriate areas for tidal stream energy conversion. Finally, the potential of tidal stream energy to contribute to the much-needed decarbonisation of the energy mix in Ireland is emphasized.
  • Item
    A holistic methodology for hydrokinetic energy site selection
    (Elsevier Ltd., 2022-04-25) Fouz, D. M.; Carballo, R.; López, I.; Iglesias, Gregorio; European Regional Development Fund; Xunta de Galicia
    Hydrokinetic energy can contribute to diversify and decarbonise the energy mix in many coastal regions, in particular estuaries. These are typically areas of high environmental value and with intense socioeconomic activity. The aim of this work is to provide a comprehensive methodology for selecting the optimum locations for hydrokinetic energy exploitation, by considering all the relevant aspects which affect the decision-making process, and improve the current available procedures. The methodology is centred around a novel holistic index, the Integrated Hydrokinetic Energy (IHE) index, which considers: (i) the exploitable resource, (ii) the costs of installation, and (iii) the socioeconomic and environmental aspects. The approach is illustrated through a case study in the Shannon Estuary, on the west coast of Ireland. It is shown that the application of this methodology facilitates the planning and reduces the uncertainties in the development of a hydrokinetic farm project.
  • Item
    Bolted shear connectors in steel-concrete composite structures: Shear behavior
    (Elsevier Ltd., 2023-11-09) Liu, Xiaoyang; Bi, Zijian; Hu, Jingyu; Hao, Hongsheng; Lin, Zhansheng; Li, Hongwei; Xie, Yuanbin; Zhao, Kai; Jing, Yucai; Yang, Guotao; National Natural Science Foundation of China; Natural Science Foundation of Shandong Province; Hebei Provincial Department of Science and Technology
    The use of bolted shear connectors is of great importance to the sustainable development of steel–concrete composite structures. In this paper, an experimental program consisting of four push-out specimens is performed to investigate the effects of bolt length and fabrication method of concrete slabs on the shear behavior of single-nut embedded bolted shear connectors in terms of failure mode and load-slip response. The concrete slabs are fabricated either as cast-in-situ monolithic slabs or precast slabs with reserved pockets which will be filled with grout in the final construction stage. The obtained results demonstrate that the fabrication method based on grouting, which is commonly utilized for strengthening and retrofitting works, does not affect the behavior of the bolted shear connection. Based on the experimental observations, a finite element (FE) model of the bolted shear connection is developed, after the obtained numerical results are verified against the test results obtained in this paper and those presented in other existing literature, a parametric study is carried out to further investigate the effects of the concrete strength, bolt strength, bolt diameter, bolt pretension load, and the length-to-diameter ratio of bolt on the performance of the bolted shear connection. Moreover, based on the obtained results, a design formula is proposed to obtain the ultimate shear resistance of the bolted shear connection, and the efficacy of the proposed design formula is proved through the comparison with the test results shown in the existing literature.
  • Item
    Electrofuels in a circular economy: A systems approach towards net zero
    (Elsevier Ltd., 2023-07-05) Rusmanis, Davis; Yang, Yan; Long, Aoife; Gray, Nathan; Martins, Kelvin C.; Ó Loideáin, Seán Óg; Lin, Richen; Kang, Xihui; Cusack, Donal Óg; Carton, James G.; Monaghan, Rory; Murphy, Jerry D.; Wall, David M.; Science Foundation Ireland
    Decarbonising the hard-to-abate sectors will be necessary in realising a future net-zero economy. Electrofuels store electricity as low carbon energy vectors such as hydrogen or methane which can be used in areas where electrification is not ideal, and as such can facilitate decarbonisation of sectors such as transport, agriculture, and wastewater treatment. In this study, the production of electrofuels was analysed at an industrial site by storing renewable electricity as green hydrogen produced using electrolysis. The analysis highlighted the need for scale in hydrogen production. The cost of hydrogen was calculated at €8.92/kg when a 122 kW electrolyser operated solely on curtailed electricity generated from the industry site was situated at a 65,000 person equivalent municipal wastewater treatment plant. A subsequent integrated and circular approach to electrofuels production was investigated. The oxygen by-product from electrolysis could be utilised for wastewater aeration and reduce the annual electricity usage at the wastewater treatment plant by 3.6%. Furthermore, the carbon dioxide in biogas generated from sewage sludge could be converted to methane through a Sabatier reaction (4H2 + CO2 → CH4 + 2H2O) as a means of carbon capture and utilisation. The hydrogen produced from the 122 kW electrolyser could convert only 40% of the total carbon dioxide (within the biogas) in a biomethanation process, again supporting the argument for larger electrolyser systems with increased hydrogen production. Pyrolysis of digestate to produce biochar was investigated as a negative emissions technology. If pyrolysis is coupled with anaerobic digestion of feedstocks within 10 km of the industry site savings of 42.7 kt CO2/a could be achieved. In essence, a circular economy approach to electrofuel production could integrate existing electrical, gas and water infrastructure, whilst treating waste, improving the environment, decarbonising agriculture, and storing energy in the form of new low carbon energy vectors for use in heavy transport. Such an approach is vital to progressing future net-zero strategies, however future emissions accountancy processes must adapt to facilitate the benefits of a circular economy.
  • Item
    Scenario analysis of cost-effectiveness of maintenance strategies for fixed tidal stream turbines in the Atlantic Ocean
    (MDPI, 2023-05-13) Kamidelivand, Mitra; Deeney, Peter; Devoy McAuliffe, Fiona; Leyne, Kevin; Togneri, Michael; Murphy, Jimmy; European Regional Development Fund
    This paper has developed an operation and maintenance (O&M) model for projected 20 MW tidal stream farm case studies at two sites in the northeast Atlantic in France and at EMEC’s Fall of Warness site in the UK. The annual energy production, number of incidents, and downtimes of the farms for corrective and planned (preventive) maintenance strategies are estimated using Monte Carlo simulations that vary weather windows, repair vessel availabilities, and mean annual failure rates modelled by Weibull distributions. The trade-offs between the mean annual failure rates, time availability, O&M costs, and energy income minus the variable O&M costs were analysed. For all scenarios, a 5-year planned maintenance strategy could considerably decrease the mean annual failure rates by 37% at both sites and increase the net energy income. Based on a detailed sensitivity analysis, the study has suggested a simple decision-making method that examines how the variation in the mean annual failure rate and changes in spare-part costs would reduce the effectiveness of a preventive maintenance strategy. This work provides insights into the most important parameters that affect the O&M cost of tidal stream turbines and their effect on tidal energy management. The output of the study will contribute to decision-making concerning maintenance strategies.