Vanadate conformation variations in vanadium pentoxide nanostructures

Loading...
Thumbnail Image
Files
JES-CODwyer-revised.pdf(522.76 KB)
Accepted Version
Date
2007-06-18
Authors
O'Dwyer, Colm
Lavayen, Vladimir
Newcomb, Simon B.
Santa-Ana, María A.
Benavente, Eglantina
Gonzalez, Guillermo
Sotomayor Torres, Clivia M.
Journal Title
Journal ISSN
Volume Title
Publisher
Electrochemical Society
Published Version
Research Projects
Organizational Units
Journal Issue
Abstract
We report the comparative structural-vibrational study of nanostructures of nanourchins, nanotubes, and nanorods of vanadium oxide. The tube walls comprise layers of vanadium oxide with the organic surfactant intercalated between atomic layers. Both Raman scattering and infrared spectroscopies showed that the structure of nanourchins, nanotubes, and nanorods of vanadium oxide nanocomposite are strongly dependent on the valency of the vanadium, its associated interactions with the organic surfactant template, and on the packing mechanism and arrangement of the surfactant between vanadate layers. Accurate assignment of the vibrational modes to the V-O coordinations has allowed their comparative classification and relation to atomic layer structure. Although all structures are formed from the same precursor, differences in vanadate conformations due to the hydrothermal treatment and surfactant type result in variable degrees of crystalline order in the final nanostructure. The nanotube-containing nanourchins contain vanadate layers in the nanotubes that are in a distorted γ- V5+ conformation, whereas the the nanorods, by comparison, show evidence for V5+ and V4+ species-containing ordered VOx lamina.
Description
Keywords
Vanadium compounds , Nanotubes , Nanocomposites , Raman spectra , Organic compounds , Surfactants , Infrared spectra , Intercalation compounds , Phonons
Citation
O'Dwyer, C., Lavayen, V., Newcomb, S. B., Santa Ana, M. A., Benavente, E., Gonzalez, G., and Sotomayor Torres, M. A. (2007) 'Vanadate conformation variations in vanadium pentoxide nanostructures'. Journal of the Electrochemical Society, 154(8), pp. K29-K35. http://jes.ecsdl.org/content/154/8/K29.abstract
Copyright
© 2007 The Electrochemical Society. All rights reserved.