Loading effect in copper(II) oxide cluster-surface-modified titanium(IV) oxide on visible- and UV-light activities

Show simple item record

dc.contributor.author Jin, Qiliang
dc.contributor.author Fujishima, Musashi
dc.contributor.author Iwaszuk, Anna
dc.contributor.author Nolan, Michael
dc.contributor.author Tada, Hiroaki
dc.date.accessioned 2016-07-22T09:32:01Z
dc.date.available 2016-07-22T09:32:01Z
dc.date.issued 2013-10-16
dc.identifier.citation Jin, Q., Fujishima, M., Iwaszuk, A., Nolan, M. and Tada, H (2013) 'Loading effect in copper(II) oxide cluster-surface-modified titanium(IV) oxide on visible- and UV-light activities', Journal of Physical Chemistry C, 117(45), pp. 23848-23857. http://pubs.acs.org/doi/abs/10.1021/jp4085525 en
dc.identifier.volume 117 en
dc.identifier.issued 45 en
dc.identifier.startpage 23848 en
dc.identifier.endpage 23857 en
dc.identifier.issn 1932-7447
dc.identifier.issn 1932-7455
dc.identifier.uri http://hdl.handle.net/10468/2925
dc.identifier.doi 10.1021/jp4085525
dc.description.abstract Cu(acac)2 is chemisorbed on TiO2 particles [P-25 (anatase/rutile = 4/1 w/w), Degussa] via coordination by surface Ti–OH groups without elimination of the acac ligand. Post-heating of the Cu(acac)2-adsorbed TiO2 at 773 K yields molecular scale copper(II) oxide clusters on the surface (CuO/TiO2). The copper loading amount (Γ/Cu ions nm–2) is controlled in a wide range by the Cu(acac)2 concentration and the chemisorption–calcination cycle number. Valence band (VB) X-ray photoelectron and photoluminescence spectroscopy indicated that the VB maximum of TiO2 rises up with increasing Γ, while vacant midgap levels are generated. The surface modification gives rise to visible-light activity and concomitant significant increase in UV-light activity for the degradation of 2-naphthol and p-cresol. Prolonging irradiation time leads to the decomposition to CO2, which increases in proportion to irradiation time. The photocatalytic activity strongly depends on the loading, Γ, with an optimum value of Γ for the photocatalytic activity. Electrochemical measurements suggest that the surface CuO clusters promote the reduction of adsorbed O2. First principles density functional theory simulations clearly show that, at Γ < 1, unoccupied Cu 3d levels are generated in the midgap region, and at Γ > 1, the VB maximum rises and the unoccupied Cu 3d levels move to the conduction band minimum of TiO2. These results suggest that visible-light excitation of CuO/TiO2 causes the bulk-to-surface interfacial electron transfer at low coverage and the surface-to-bulk interfacial electron transfer at high coverage. We conclude that the surface CuO clusters enhance the separation of photogenerated charge carriers by the interfacial electron transfer and the subsequent reduction of adsorbed O2 to achieve the compatibility of high levels of visible and UV-light activities. en
dc.description.sponsorship Ministry of Education, Science, Sport, and Culture, Japan (Grant-in-Aid for Scientific Research (C) No. 24550239); Nippon Sheet Glass Foundation, Japan (Materials Science and Engineering); Sumitomo Foundation, Japan; Science Foundation Ireland and Higher Education Authority (Irish Centre for High End Computing); European Commission (COST Action CM1104 “Reducible Metal Oxides, Structure and Function”), (Partnership in Advanced Computing (PRACE), contracts RI-261557, RI-283493 and RI-312763), (DECI-9 initiative: access to the JUROPA Computer at Forschungszentrum Juelich) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Chemical Society en
dc.rights This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/jp4085525 en
dc.subject Photocatalytic reaction en
dc.subject TiO2 photocatalysts en
dc.subject Oxygen vacancies en
dc.subject Transition metal en
dc.subject Iron oxide en
dc.subject Irradation en
dc.subject Dioxide en
dc.subject Semiconductor en
dc.subject Deposition en
dc.subject Particles en
dc.title Loading effect in copper(II) oxide cluster-surface-modified titanium(IV) oxide on visible- and UV-light activities en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2014-04-08T12:42:43Z
dc.description.version Accepted Version en
dc.internal.rssid 243941480
dc.internal.wokid 000327110500045
dc.contributor.funder Higher Education Authority en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder European Commission en
dc.contributor.funder Ministry of Education, Culture, Sports, Science and Technology en
dc.contributor.funder Nippon Sheet Glass Foundation for Materials Science and Engineering en
dc.contributor.funder Sumitomo Foundation en
dc.contributor.funder European Cooperation in Science and Technology
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Physical Chemistry C en
dc.internal.copyrightchecked Yes !!CORA!! Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/09/SIRG/I1620/IE/EMOIN: Engineering Metal Oxide Interfaces For Renewable Energy Photocatalysis/


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement