Carbon-coated honeycomb Ni-Mn-Co-O inverse opal: a high capacity ternary transition metal oxide anode for Li-ion batteries

Thumbnail Image
2539.pdf(2.1 MB)
Published Version
2539_1.pdf(2.42 MB)
Additional File
McNulty, David
Geaney, Hugh
O'Dwyer, Colm
Journal Title
Journal ISSN
Volume Title
Nature Publishing Group
Published Version
Research Projects
Organizational Units
Journal Issue
We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications.
Li-ion battery applications , Nanoparticles , Honeycomb , Conversion mode oxides
McNulty, D., Geaney, H. and O’Dwyer, C. (2017) 'Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries', Scientific Reports, 7, pp. 42263. doi:10.1038/srep42263
Link to publisher’s version