Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

Show simple item record

dc.contributor.author Mallet, M.
dc.contributor.author Dulac, Francois
dc.contributor.author Formenti, P.
dc.contributor.author Nabat, P.
dc.contributor.author Sciare, J.
dc.contributor.author Roberts, G.
dc.contributor.author Pelon, J.
dc.contributor.author Ancellet, G.
dc.contributor.author Tanré, D.
dc.contributor.author Parol, F.
dc.contributor.author Denjean, C.
dc.contributor.author Brogniez, G.
dc.contributor.author di Sarra, A.
dc.contributor.author Alados Arboledas, L.
dc.contributor.author Arndt, Jovanna
dc.contributor.author Auriol, F.
dc.contributor.author Blarel, L.
dc.contributor.author Bourrianne, T.
dc.contributor.author Chazette, P.
dc.contributor.author Chevaillier, S.
dc.contributor.author Claeys, M.
dc.contributor.author D'Anna, B.
dc.contributor.author Derimian, Y.
dc.contributor.author Desboeufs, K.
dc.contributor.author Di Iorio, T.
dc.contributor.author Doussin, Jean-Francois
dc.contributor.author Durand, P.
dc.contributor.author Féron, A.
dc.contributor.author Freney, E.
dc.contributor.author Gaimoz, C.
dc.contributor.author Goloub, P.
dc.contributor.author Gómez-Amo, J. L.
dc.contributor.author Granados-Muñoz, M. J.
dc.contributor.author Grand, N.
dc.contributor.author Hamonou, E.
dc.contributor.author Jankowiak, I.
dc.contributor.author Jeannot, M.
dc.contributor.author Léon, J. F.
dc.contributor.author Maillé, M.
dc.contributor.author Mailler, S.
dc.contributor.author Meloni, D.
dc.contributor.author Menut, L.
dc.contributor.author Momboisse, G.
dc.contributor.author Nicolas, J.
dc.contributor.author Podvin, T.
dc.contributor.author Pont, V.
dc.contributor.author Rea, G.
dc.contributor.author Renard, J. B.
dc.contributor.author Roblou, L.
dc.contributor.author Schepanski, K.
dc.contributor.author Schwarzenboeck, A.
dc.contributor.author Sellegri, K.
dc.contributor.author Sicard, M.
dc.contributor.author Solmon, F.
dc.contributor.author Somot, S.
dc.contributor.author Torres, B.
dc.contributor.author Totems, J.
dc.contributor.author Triquet, S.
dc.contributor.author Verdier, N.
dc.contributor.author Verwaerde, C.
dc.contributor.author Waquet, F.
dc.contributor.author Wenger, John C.
dc.contributor.author Zapf, P.
dc.date.accessioned 2017-06-22T13:55:55Z
dc.date.available 2017-06-22T13:55:55Z
dc.date.issued 2016-01-19
dc.identifier.citation Mallet, M., Dulac, F., Formenti, P., Nabat, P., Sciare, J., Roberts, G., Pelon, J., Ancellet, G., Tanré, D., Parol, F., Denjean, C., Brogniez, G., di Sarra, A., Alados-Arboledas, L., Arndt, J., Auriol, F., Blarel, L., Bourrianne, T., Chazette, P., Chevaillier, S., Claeys, M., D'Anna, B., Derimian, Y., Desboeufs, K., Di Iorio, T., Doussin, J. F., Durand, P., Féron, A., Freney, E., Gaimoz, C., Goloub, P., Gómez-Amo, J. L., Granados-Muñoz, M. J., Grand, N., Hamonou, E., Jankowiak, I., Jeannot, M., Léon, J. F., Maillé, M., Mailler, S., Meloni, D., Menut, L., Momboisse, G., Nicolas, J., Podvin, T., Pont, V., Rea, G., Renard, J. B., Roblou, L., Schepanski, K., Schwarzenboeck, A., Sellegri, K., Sicard, M., Solmon, F., Somot, S., Torres, B., Totems, J., Triquet, S., Verdier, N., Verwaerde, C., Waquet, F., Wenger, J. and Zapf, P. (2016) 'Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign',Atmospheric Chemistry and Physics, 16, pp. 455-504. doi: 10.5194/acp-16-455-2016 en
dc.identifier.volume 16
dc.identifier.startpage 455
dc.identifier.endpage 504
dc.identifier.issn 1680-7324
dc.identifier.uri http://hdl.handle.net/10468/4180
dc.identifier.doi 10.5194/acp-16-455-2016
dc.description.abstract The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high levels of atmospheric pollutants or intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign, with the main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 and 0.6 (at 440 nm) over the western and central Mediterranean basins. One important point of this experiment concerns the direct observations of aerosol extinction onboard the ATR-42, using the CAPS system, showing local maxima reaching up to 150 M m−1 within the dust plume. Non-negligible aerosol extinction (about 50 M m−1) has also been observed within the marine boundary layer (MBL). By combining the ATR-42 extinction coefficient observations with absorption and scattering measurements, we performed a complete optical closure revealing excellent agreement with estimated optical properties. This additional information on extinction properties has allowed calculation of the dust single scattering albedo (SSA) with a high level of confidence over the western Mediterranean. Our results show a moderate variability from 0.90 to 1.00 (at 530 nm) for all flights studied compared to that reported in the literature on this optical parameter. Our results underline also a relatively low difference in SSA with values derived near dust sources. In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea spray and pollution located within the MBL, and mineral dust and/or aged North American smoke particles located above (up to 6–7 km in altitude). Aircraft and balloon-borne observations allow one to investigate the vertical structure of the aerosol size distribution showing particles characterized by a large size (> 10 µm in diameter) within dust plumes. In most of cases, a coarse mode characterized by an effective diameter ranging between 5 and 10 µm, has been detected above the MBL. In terms of shortwave (SW) direct forcing, in situ surface and aircraft observations have been merged and used as inputs in 1-D radiative transfer codes for calculating the aerosol direct radiative forcing (DRF). Results show significant surface SW instantaneous forcing (up to −90 W m−2 at noon). Aircraft observations provide also original estimates of the vertical structure of SW and LW radiative heating revealing significant instantaneous values of about 5° K per day in the solar spectrum (for a solar angle of 30°) within the dust layer. Associated 3-D modeling studies from regional climate (RCM) and chemistry transport (CTM) models indicate a relatively good agreement for simulated AOD compared with observations from the AERONET/PHOTONS network and satellite data, especially for long-range dust transport. Calculations of the 3-D SW (clear-sky) surface DRF indicate an average of about −10 to −20 W m−2 (for the whole period) over the Mediterranean Sea together with maxima (−50 W m−2) over northern Africa. The top of the atmosphere (TOA) DRF is shown to be highly variable within the domain, due to moderate absorbing properties of dust and changes in the surface albedo. Indeed, 3-D simulations indicate negative forcing over the Mediterranean Sea and Europe and positive forcing over northern Africa. Finally, a multi-year simulation, performed for the 2003 to 2009 period and including an ocean–atmosphere (O–A) coupling, underlines the impact of the aerosol direct radiative forcing on the sea surface temperature, O–A fluxes and the hydrological cycle over the Mediterranean. en
dc.description.sponsorship French National Research Agency (project ADRIMED (contract ANR-11-BS56-0006); ChArMEx project supported by Agence de l'Environnement et de la Maîtrise de l'Énergie, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS- National Institute for Earth Sciences and Astronomy and MétéoFrance through the multidisciplinary programme MISTRALS (Mediterranean Integrated Studies aT Regional And Local Scales); CORSiCA project funded by the Collectivité Territoriale de Corse through the Fonds Européen de Développement Régional of the European Operational Program 2007–2013 and the Contrat de Plan Etat-Région; Italian Ministry for University and Research through the NextData and Ritmare projects; French space agency (CNES); Spanish Ministry of Economy and Competitivity (project TEC2012-34575); Science and Innovation (project UNPC10-4E-442); FEDER funds; Department of Economy; Knowledge of the Catalan Autonomous Government (grant 2014 SGR 583); Andalusian Regional Government (project P12-RNM-2409); Spanish Ministry of Science and Technology (project CGL2013-45410-R) European Union’s Horizon 2020 research and innovation program under (grant agreement no. 654169) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher European Geosciences Union en
dc.relation.uri http://www.atmos-chem-phys.net/16/455/2016/
dc.rights © 2016, the Author(s). This work is distributed under the Creative Commons Attribution 3.0 License. en
dc.rights.uri https://creativecommons.org/licenses/by/3.0/ en
dc.subject Chemistry-Aerosol Mediterranean Experiment en
dc.subject Aerosol Direct Radiative Forcing on the Mediterranean en
dc.subject Climate en
dc.title Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother John Wenger, Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland. +353-21-490-3000 Email: j.wenger@ucc.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.contributor.funder Agence Nationale de la Recherche
dc.contributor.funder Agence de l'Environnement et de la Maîtrise de l'Energie
dc.contributor.funder Commissariat à l'Énergie Atomique et aux Énergies Alternatives
dc.contributor.funder Institut National des Sciences de l'Univers, Centre National de la Recherche Scientifique
dc.contributor.funder MétéoFrance
dc.contributor.funder Contrat de Plan Etat Région
dc.contributor.funder European Regional Development Fund
dc.contributor.funder Italian Ministry for University
dc.contributor.funder Centre National d’Etudes Spatiales
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Federación Española de Enfermedades Raras
dc.contributor.funder Generalitat de Catalunya
dc.contributor.funder Andalusian Regional Government
dc.contributor.funder Ministerio de Ciencia y Tecnología
dc.contributor.funder Horizon 2020
dc.contributor.funder Seventh Framework Programme
dc.description.status Peer reviewed en
dc.identifier.journaltitle Atmospheric Chemistry and Physics en
dc.internal.IRISemailaddress j.wenger@ucc.ie en
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP4::INFRA/262254/EU/Aerosols, Clouds, and Trace gases Research Infrastructure Network/ACTRIS


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2016, the Author(s). This work is distributed under the Creative Commons Attribution 3.0 License. Except where otherwise noted, this item's license is described as © 2016, the Author(s). This work is distributed under the Creative Commons Attribution 3.0 License.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement