Magnetic properties of nickel nanowires: Effect of deposition temperature

Show simple item record

dc.contributor.author Razeeb, Kafil M.
dc.contributor.author Rhen, Fernando M. F.
dc.contributor.author Roy, Saibal
dc.date.accessioned 2017-07-12T09:07:43Z
dc.date.available 2017-07-12T09:07:43Z
dc.date.issued 2009-04-28
dc.identifier.citation Razeeb, K. M., Rhen, F. M. F. and Roy, S. (2009) 'Magnetic properties of nickel nanowires: Effect of deposition temperature', Journal of Applied Physics, 105(8), pp. 083922. doi: 10.1063/1.3109080 en
dc.identifier.volume 105
dc.identifier.issued 8
dc.identifier.startpage 1
dc.identifier.endpage 7
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10468/4215
dc.identifier.doi 10.1063/1.3109080
dc.description.abstract We have investigated the magnetic properties of electroplated nickel nanowires with very distinct nanostructures, which are obtained by simply changing the plating temperature of the electrolyte. Low temperature (40 degrees C) resulted in larger average grain size comparable to the diameter of the wires, whereas higher temperature (60 degrees C) revealed self-similar morphology composed of nanogranules. For low temperature samples, a two stage magnetization process is evident in the easy axis direction where grain size is comparable to wire diameter. In contrast, for high temperature samples, nanowires are formed by an agglomeration of particles with average diameter of about 22 nm. In this case each individual particle behaves as a single domain and thereby magnetization reversal occurs by the switching of an ensemble of randomly oriented particles and magnetization saturates quickly with applied field. In the present case, with the high density of disorder caused by the self-similar morphology of the nanogranules, we suggest that the switching mechanism of the magnetization occurs by localized coherent rotation, resulting in lower coercivity. This delineates first experimental evidence of three dimensional cooperative magnetic interactions among the nanogranules within self-similar morphology of nanowires in both parallel and perpendicular wire axes. en
dc.description.sponsorship Science Foundation Ireland (SFI) (06/IN.1/I98); Enterprise Ireland (EI) (ILRP/05/PEIG/7) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri http://aip.scitation.org/doi/abs/10.1063/1.3109080
dc.rights © 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Razeeb, K. M., Rhen, F. M. F. and Roy, S. (2009) 'Magnetic properties of nickel nanowires: Effect of deposition temperature', Journal of Applied Physics, 105(8), pp. 083922. doi: 10.1063/1.3109080 and may be found at http://aip.scitation.org/doi/abs/10.1063/1.3109080 en
dc.subject Coercive force en
dc.subject Electrolytes en
dc.subject Electroplating en
dc.subject Grain size en
dc.subject High-temperature effects en
dc.subject Magnetic domains en
dc.subject Magnetic switching en
dc.subject Magnetisation reversal en
dc.subject Nanowires en
dc.subject Nickel en
dc.subject Nanomagnetism en
dc.subject Anisotropy en
dc.subject Magnetic anisotropy en
dc.title Magnetic properties of nickel nanowires: Effect of deposition temperature en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Saibal Roy, Tyndall National Institute, Cork, Ireland +353 21 490 3000. E-mail: saibal.roy@tyndall.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.contributor.funder Science Foundation Ireland
dc.contributor.funder Enterprise Ireland
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Applied Physics en
dc.internal.IRISemailaddress saibal.roy@tyndall.ie en
dc.identifier.articleid 83922


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement