Analysis of electron mobility in HfO2/TiN gate metal-oxide-semiconductor field effect transistors: The influence of HfO2 thickness, temperature, and oxide charge

Loading...
Thumbnail Image
Files
3107.pdf(1.31 MB)
Published Version
Date
2009-01-27
Authors
Negara, Muhammad A.
Cherkaoui, Karim
Hurley, Paul K.
Young, C. D.
Majhi, P.
Tsai, W.
Bauza, D.
Ghibaudo, G.
Journal Title
Journal ISSN
Volume Title
Publisher
AIP Publishing
Published Version
Research Projects
Organizational Units
Journal Issue
Abstract
We report a new analysis of electron mobility in HfO2/TiN gate metal-oxide-semiconductor field effect transistors (MOSFETs) by investigating the influence of HfO2 thickness (1.6-3 nm), temperature (50-350 K), and oxide charge (similar to 1x10(11)-8x10(12) cm(-2)) in the high inversion charge region. The fixed oxide charge and interface state densities are deliberately increased using negative-bias-temperature stress, allowing the determination of the Coulomb scattering term as a function of temperature for various oxide charge levels. The temperature dependence of the Coulomb scattering term is consistent with the case of a strongly screened Coulomb potential. Using the experimentally determined temperature dependence of Coulomb scattering term, a model is developed for the electron mobility, including the effects oxide charge (mu(C)), high-k phonon (mu(Ph-Hk)), silicon phonon (mu(Ph-Si)), and surface roughness scattering (mu(SR)). The model provides an accurate description of the experimental data for variations in HfO2 thickness, temperature, and oxide charge. Using the model the relative contributions of each mobility component are presented for varying oxide charge and high-k thickness. Scaling of the HfO2 physical thickness provided a reduction in the oxide charge and high-k phonon scattering mechanisms, leading to an increase in electron mobility in HfO2/TiN gate MOSFETs.
Description
Keywords
Electric potential , Electron mobility , Hafnium compounds , Interface states , MOSFET , Surface roughness , Titanium compounds
Citation
Negara, M. A., Cherkaoui, K., Hurley, P. K., Young, C. D., Majhi, P., Tsai, W., Bauza, D. and Ghibaudo, G. (2009) 'Analysis of electron mobility in HfO2/TiN gate metal-oxide-semiconductor field effect transistors: The influence of HfO2 thickness, temperature, and oxide charge', Journal of Applied Physics, 105(2), pp. 024510. doi: 10.1063/1.3068367
Copyright
© 2009 American Institute of Physics, This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Negara, M. A., Cherkaoui, K., Hurley, P. K., Young, C. D., Majhi, P., Tsai, W., Bauza, D. and Ghibaudo, G. (2009) 'Analysis of electron mobility in HfO2/TiN gate metal-oxide-semiconductor field effect transistors: The influence of HfO2 thickness, temperature, and oxide charge', Journal of Applied Physics, 105(2), pp. 024510. doi: 10.1063/1.3068367 and may be found at http://aip.scitation.org/doi/abs/10.1063/1.3068367