Analysis of electron mobility in HfO2/TiN gate metal-oxide-semiconductor field effect transistors: The influence of HfO2 thickness, temperature, and oxide charge

Show simple item record

dc.contributor.author Negara, Muhammad A.
dc.contributor.author Cherkaoui, Karim
dc.contributor.author Hurley, Paul K.
dc.contributor.author Young, C. D.
dc.contributor.author Majhi, P.
dc.contributor.author Tsai, W.
dc.contributor.author Bauza, D.
dc.contributor.author Ghibaudo, G.
dc.date.accessioned 2017-07-12T09:07:43Z
dc.date.available 2017-07-12T09:07:43Z
dc.date.issued 2009-01-27
dc.identifier.citation Negara, M. A., Cherkaoui, K., Hurley, P. K., Young, C. D., Majhi, P., Tsai, W., Bauza, D. and Ghibaudo, G. (2009) 'Analysis of electron mobility in HfO2/TiN gate metal-oxide-semiconductor field effect transistors: The influence of HfO2 thickness, temperature, and oxide charge', Journal of Applied Physics, 105(2), pp. 024510. doi: 10.1063/1.3068367 en
dc.identifier.volume 105
dc.identifier.issued 8
dc.identifier.startpage 1
dc.identifier.endpage 8
dc.identifier.issn 0021-8979
dc.identifier.issn 1089-7550
dc.identifier.uri http://hdl.handle.net/10468/4217
dc.identifier.doi 10.1063/1.3068367
dc.description.abstract We report a new analysis of electron mobility in HfO2/TiN gate metal-oxide-semiconductor field effect transistors (MOSFETs) by investigating the influence of HfO2 thickness (1.6-3 nm), temperature (50-350 K), and oxide charge (similar to 1x10(11)-8x10(12) cm(-2)) in the high inversion charge region. The fixed oxide charge and interface state densities are deliberately increased using negative-bias-temperature stress, allowing the determination of the Coulomb scattering term as a function of temperature for various oxide charge levels. The temperature dependence of the Coulomb scattering term is consistent with the case of a strongly screened Coulomb potential. Using the experimentally determined temperature dependence of Coulomb scattering term, a model is developed for the electron mobility, including the effects oxide charge (mu(C)), high-k phonon (mu(Ph-Hk)), silicon phonon (mu(Ph-Si)), and surface roughness scattering (mu(SR)). The model provides an accurate description of the experimental data for variations in HfO2 thickness, temperature, and oxide charge. Using the model the relative contributions of each mobility component are presented for varying oxide charge and high-k thickness. Scaling of the HfO2 physical thickness provided a reduction in the oxide charge and high-k phonon scattering mechanisms, leading to an increase in electron mobility in HfO2/TiN gate MOSFETs. en
dc.description.sponsorship European Commission (under the frame of the Network of Excellence "SINANO"); Science Foundation Ireland (05/IN/1751)) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri http://aip.scitation.org/doi/abs/10.1063/1.3068367
dc.rights © 2009 American Institute of Physics, This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Negara, M. A., Cherkaoui, K., Hurley, P. K., Young, C. D., Majhi, P., Tsai, W., Bauza, D. and Ghibaudo, G. (2009) 'Analysis of electron mobility in HfO2/TiN gate metal-oxide-semiconductor field effect transistors: The influence of HfO2 thickness, temperature, and oxide charge', Journal of Applied Physics, 105(2), pp. 024510. doi: 10.1063/1.3068367 and may be found at http://aip.scitation.org/doi/abs/10.1063/1.3068367 en
dc.subject Electric potential en
dc.subject Electron mobility en
dc.subject Hafnium compounds en
dc.subject Interface states en
dc.subject MOSFET en
dc.subject Surface roughness en
dc.subject Titanium compounds en
dc.title Analysis of electron mobility in HfO2/TiN gate metal-oxide-semiconductor field effect transistors: The influence of HfO2 thickness, temperature, and oxide charge en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Paul Hurley, Tyndall National Institute, University College Cork, Cork, Ireland, +353 21 490 3000, E-mail: Paul.Hurley@tyndall.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.contributor.funder European Commission
dc.contributor.funder Intel Corporation
dc.contributor.funder Science Foundation Ireland
dc.contributor.funder Intel Ireland Ltd. en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Applied Physics en
dc.internal.IRISemailaddress Paul.Hurley@tyndall.ie en
dc.identifier.articleid 24510


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement