Electro-optic properties of GaInAsSb/GaAs quantum well for high-speed integrated optoelectronic devices

Show simple item record

dc.contributor.author Thoma, Jiri
dc.contributor.author Liang, Baolai
dc.contributor.author Reyner, Charles
dc.contributor.author Ochalski, Tomasz J.
dc.contributor.author Williams, David P.
dc.contributor.author Hegarty, Stephen P.
dc.contributor.author Huffaker, Diana L.
dc.contributor.author Huyet, Guillaume
dc.date.accessioned 2017-07-28T09:23:24Z
dc.date.available 2017-07-28T09:23:24Z
dc.date.issued 2013
dc.identifier.citation Thoma, J., Liang, B., Reyner, C., Ochalski, T., Williams, D., Hegarty, S. P., Huffaker, D. and Huyet, G. (2013) 'Electro-optic properties of GaInAsSb/GaAs quantum well for high-speed integrated optoelectronic devices', Applied Physics Letters, 102(1), pp. 013120. doi: 10.1063/1.4775371 en
dc.identifier.volume 102
dc.identifier.issued 1
dc.identifier.startpage 1
dc.identifier.endpage 4
dc.identifier.issn 0003-6951
dc.identifier.issn 1077-3118
dc.identifier.uri http://hdl.handle.net/10468/4291
dc.identifier.doi 10.1063/1.4775371
dc.description.abstract The electro-optic properties of strained GaInAsSb/GaAs quantum wells (QWs) are investigated. A single QW p-i-n sample was grown by molecular beam epitaxy with antimony (Sb) pre-deposition technique. We numerically predict and experimentally verify a strong quantum confined Stark shift of 40 nm. We also predict a fast absorption recovery times crucial of high-speed optoelectronic devices mainly due to strong electron tunneling and thermionic emission. Predicted recovery times are corroborated by bias and temperature dependent time-resolved photoluminescence measurements indicating (<= 30 ps) recovery times. This makes GaInAsSb QW an attractive material particularly for electroabsorption modulators and saturable absorbers. (C) 2013 American Institute of Physics. (http://dx.doi.org/10.1063/1.4775371) en
dc.description.sponsorship Science Foundation Ireland (SFI) Strategic Research Cluster, PiFAS (07/SRC/I1173); United States Department of Defense (NSSEFF N00244-09-1-0091) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri http://aip.scitation.org/doi/abs/10.1063/1.4775371
dc.rights © 2013 American Institute of Physics.This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Thoma, J., Liang, B., Reyner, C., Ochalski, T., Williams, D., Hegarty, S. P., Huffaker, D. and Huyet, G. (2013) 'Electro-optic properties of GaInAsSb/GaAs quantum well for high-speed integrated optoelectronic devices', Applied Physics Letters, 102(1), pp. 013120 and may be found at http://aip.scitation.org/doi/abs/10.1063/1.4775371 en
dc.subject Molecular-beam epitaxy en
dc.subject Optical-properties en
dc.subject Threshold-current en
dc.subject Sb surfactant en
dc.subject Lasers en
dc.subject Gainnas en
dc.subject Recombination en
dc.subject Quantum wells en
dc.subject III-V semiconductors en
dc.subject Electric fields en
dc.subject Photoluminescence en
dc.subject Tunneling en
dc.title Electro-optic properties of GaInAsSb/GaAs quantum well for high-speed integrated optoelectronic devices en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Stephen Hegarty, Tyndall National Institute, University College Cork, Cork, Ireland +353-21-490-3000, Email: stephen.hegarty@tyndall.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.internal.wokid WOS:000313646500114
dc.contributor.funder Science Foundation Ireland
dc.contributor.funder U.S. Department of Defense
dc.description.status Peer reviewed en
dc.identifier.journaltitle Applied Physics Letters en
dc.internal.IRISemailaddress stephen.hegarty@tyndall.ie en
dc.identifier.articleid 13120


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement