Modeling the capacitance-voltage response of In0.53Ga0.47As metal-oxide-semiconductor structures: Charge quantization and nonparabolic corrections

Show simple item record

dc.contributor.author O'Regan, Terrance P.
dc.contributor.author Hurley, Paul K.
dc.contributor.author Sorée, Bart
dc.contributor.author Fischetti, Massimo V.
dc.date.accessioned 2017-07-28T11:22:09Z
dc.date.available 2017-07-28T11:22:09Z
dc.date.issued 2010
dc.identifier.citation O’Regan, T. P., Hurley, P. K., Sorée, B. and Fischetti, M. V. (2010) 'Modeling the capacitance-voltage response of In0.53Ga0.47As metal-oxide-semiconductor structures: Charge quantization and nonparabolic corrections', Applied Physics Letters, 96(21), pp. 213514. doi: 10.1063/1.3436645 en
dc.identifier.volume 96
dc.identifier.issued 21
dc.identifier.startpage 1
dc.identifier.endpage 3
dc.identifier.issn 0003-6951
dc.identifier.issn 1077-3118
dc.identifier.uri http://hdl.handle.net/10468/4341
dc.identifier.doi 10.1063/1.3436645
dc.description.abstract The capacitance-voltage (C-V) characteristic is calculated for p-type In0.53Ga0.47As metal-oxide-semiconductor (MOS) structures based on a self-consistent Poisson-Schroumldinger solution. For strong inversion, charge quantization leads to occupation of the satellite valleys which appears as a sharp increase in the capacitance toward the oxide capacitance. The results indicate that the charge quantization, even in the absence of interface defects (D-it), is a contributing factor to the experimental observation of an almost symmetric C-V response for In0.53Ga0.47As MOS structures. In addition, nonparabolic corrections are shown to enhance the depopulation of the Gamma valley, shifting the capacitance increase to lower inversion charge densities. (C) 2010 American Institute of Physics. (doi:10.1063/1.3436645) en
dc.description.sponsorship Science Foundation Ireland (through the U.S.-Ireland Research Project Project No. 08/U.S./I1546) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri http://aip.scitation.org/doi/abs/10.1063/1.3436645
dc.rights © 2010 American Institute of Physics.This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in O’Regan, T. P., Hurley, P. K., Sorée, B. and Fischetti, M. V. (2010) 'Modeling the capacitance-voltage response of In0.53Ga0.47As metal-oxide-semiconductor structures: Charge quantization and nonparabolic corrections', Applied Physics Letters, 96(21), pp. 213514 and may be found at http://aip.scitation.org/doi/abs/10.1063/1.3436645 en
dc.subject Inversion-layers en
dc.subject Band-structure en
dc.subject MOSFETs en
dc.subject Aluminium compounds en
dc.subject Capacitance en
dc.subject Charge density waves en
dc.subject Gallium arsenide en
dc.subject III-V semiconductors en
dc.subject Indium compounds en
dc.subject MIS structures en
dc.subject Poisson equation en
dc.subject SCF calculations en
dc.subject Schrodinger equation en
dc.subject Metal insulator semiconductor structures en
dc.subject Capacitance en
dc.subject Interface structure en
dc.subject Semiconductors en
dc.title Modeling the capacitance-voltage response of In0.53Ga0.47As metal-oxide-semiconductor structures: Charge quantization and nonparabolic corrections en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Paul Hurley, Tyndall National Institute, University College Cork, Cork, Ireland +353 21 490 3000, Email: paul.hurley@tyndall.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.internal.wokid WOS:000278183200090
dc.contributor.funder Science Foundation Ireland
dc.description.status Peer reviewed en
dc.identifier.journaltitle Applied Physics Letters en
dc.internal.IRISemailaddress paul.hurley@tyndall.ie en
dc.identifier.articleid 213514


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement