Full text restriction information:Access to this article is restricted until 12 months after publication by request of the publisher.
Restriction lift date:2018-08-22
Citation:Moroni, S. T., Chung, T. H., Juska, G., Gocalinska, A. and Pelucchi, E. (2017) 'Statistical study of stacked/coupled site-controlled pyramidal quantum dots and their excitonic properties', Applied Physics Letters, 111(8), 083103 (5 pp). doi:10.1063/1.4985259
We report on stacked multiple quantum dots (QDs) formed inside inverted pyramidal recesses, which allow for the precise positioning of the QDs themselves. Specifically, we fabricated double QDs with varying inter-dot distances and ensembles with more than two nominally highly symmetric QDs. For each, the effect of the interaction between QDs is studied by characterizing a large number of QDs through photoluminescence spectroscopy. A clear red-shift of the emission energy is observed together with a change in the orientation of its polarization, suggesting an increasing interaction between the QDs. Finally, we show how stacked QDs can help influencing the charging of the excitonic complexes.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement