Indium segregation during III-V quantum wire and quantum dot formation on patterned substrates

Show simple item record

dc.contributor.author Moroni, Stefano T.
dc.contributor.author Dimastrodonato, Valeria
dc.contributor.author Chung, Tung-Hsun
dc.contributor.author Juska, Gediminas
dc.contributor.author Gocalińska, Agnieszka M.
dc.contributor.author Vvedensky, Dimitri D.
dc.contributor.author Pelucchi, Emanuele
dc.date.accessioned 2017-09-20T10:06:31Z
dc.date.available 2017-09-20T10:06:31Z
dc.date.issued 2015
dc.identifier.citation Moroni, S. T., Dimastrodonato, V., Chung, T.-H., Juska, G., Gocalinska, A., Vvedensky, D. D. and Pelucchi, E. (2015) 'Indium segregation during III–V quantum wire and quantum dot formation on patterned substrates', Journal of Applied Physics, 117(16), 164313 (7pp). doi: 10.1063/1.4919362 en
dc.identifier.volume 117
dc.identifier.issued 16
dc.identifier.startpage 1
dc.identifier.endpage 7
dc.identifier.issn 0021-8979
dc.identifier.issn 1089-7550
dc.identifier.uri http://hdl.handle.net/10468/4713
dc.identifier.doi 10.1063/1.4919362
dc.description.abstract We report a model for metalorganic vapor-phase epitaxy on non-planar substrates, specifically V-grooves and pyramidal recesses, which we apply to the growth of InGaAs nanostructures. This model-based on a set of coupled reaction-diffusion equations, one for each facet in the system-accounts for the facet-dependence of all kinetic processes (e.g., precursor decomposition, adatom diffusion, and adatom lifetimes) and has been previously applied to account for the temperature-, concentration-, and temporal-dependence of AlGaAs nanostructures on GaAs(111)B surfaces with V-grooves and pyramidal recesses. In the present study, the growth of In(0.1)2Ga(0.88)As quantum wires at the bottom of V-grooves is used to determine a set of optimized kinetic parameters. Based on these parameters, we have modeled the growth of In0.25Ga0.75As nanostructures formed in pyramidal site-controlled quantum-dot systems, successfully producing a qualitative explanation for the temperature-dependence of their optical properties, which have been reported in previous studies. Finally, we present scanning electron and cross-sectional atomic force microscopy images which show previously unreported facetting at the bottom of the pyramidal recesses that allow quantum dot formation. (C) 2015 AIP Publishing LLC. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri http://aip.scitation.org/doi/10.1063/1.4919362
dc.rights © 2015 AIP Publishing LLC. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Moroni, S. T., Dimastrodonato, V., Chung, T.-H., Juska, G., Gocalinska, A., Vvedensky, D. D. and Pelucchi, E. (2015) 'Indium segregation during III–V quantum wire and quantum dot formation on patterned substrates', Journal of Applied Physics, 117(16), 164313 (7pp). doi: 10.1063/1.4919362 and may be found at http://aip.scitation.org/doi/10.1063/1.4919362 en
dc.subject Quantum dots en
dc.subject Diffusion en
dc.subject Quantum wires en
dc.subject Metalorganic vapor phase epitaxy en
dc.subject III-V semiconductors en
dc.subject Optical-properties en
dc.subject Growth en
dc.subject Heterostructures en
dc.subject Pyramids en
dc.title Indium segregation during III-V quantum wire and quantum dot formation on patterned substrates en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Stefano T. Moroni, Tyndall National Institute, University College Cork, Cork, Ireland +353-21-490-3000 Email: stefano.moroni@tyndall.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.contributor.funder Higher Education Authority
dc.contributor.funder Science Foundation Ireland
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Applied Physics en
dc.internal.IRISemailaddress stefano.moroni@tyndall.ie en
dc.identifier.articleid 164313
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/10/IN.1/I3000/IE/Controlling deterministically engineered III-V nanostructures: towards quantum information devices/


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement