SiNx-induced intermixing in AlInGaAs/InP quantum well through interdiffusion of group III atoms

Show simple item record

dc.contributor.author Lee, Ko-Hsin
dc.contributor.author Thomas, Kevin K.
dc.contributor.author Gocalińska, Agnieszka M.
dc.contributor.author Manganaro, Marina
dc.contributor.author Pelucchi, Emanuele
dc.contributor.author Peters, Frank H.
dc.contributor.author Corbett, Brian M.
dc.date.accessioned 2017-09-20T10:06:33Z
dc.date.available 2017-09-20T10:06:33Z
dc.date.issued 2012
dc.identifier.citation Lee, K.-H., Thomas, K., Gocalinska, A., Manganaro, M., Pelucchi, E., Peters, F. H. and Corbett, B. (2012) 'SiNx-induced intermixing in AlInGaAs/InP quantum well through interdiffusion of group III atoms', Journal of Applied Physics, 112(9), 093109 (4pp). doi: 10.1063/1.4764856 en
dc.identifier.volume 112
dc.identifier.issued 9
dc.identifier.startpage 1
dc.identifier.endpage 5
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10468/4728
dc.identifier.doi 10.1063/1.4764856
dc.description.abstract We analyze the composition profiles within intermixed and non-intermixed AlInGaAs-based multiple quantum wells structures by secondary ion mass spectrometry and observe that the band gap blue shift is mainly attributed to the interdiffusion of In and Ga atoms between the quantum wells and the barriers. Based on these results, several AlInGaAs-based single quantum well (SQW) structures with various compressive strain (CS) levels were grown and their photoluminescence spectra were investigated after the intermixing process involving the encapsulation of thin SiNx dielectric films on the surface followed by rapid thermal annealing. In addition to the annealing temperature, we report that the band gap shift can be also enhanced by increasing the CS level in the SQW. For instance, at an annealing temperature of 850 degrees C, the photoluminescence blue shift is found to reach more than 110 nm for the sample with 1.2%-CS SQW, but only 35 nm with 0.4%-CS SQW. We expect that this relatively larger atomic compositional gradient of In (and Ga) between the compressively strained quantum well and the barrier can facilitate the atomic interdiffusion and it thus leads to the larger band gap shift. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4764856] en
dc.description.sponsorship Science Foundation Ireland [07/SRC/I1173]; Higher Education Authority (INSPIRE program) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri http://aip.scitation.org/doi/10.1063/1.4764856
dc.rights © 2012, American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Lee, K.-H., Thomas, K., Gocalinska, A., Manganaro, M., Pelucchi, E., Peters, F. H. and Corbett, B. (2012) 'SiNx-induced intermixing in AlInGaAs/InP quantum well through interdiffusion of group III atoms', Journal of Applied Physics, 112(9), 093109 (4pp). doi: 10.1063/1.4764856 and may be found at http://aip.scitation.org/doi/10.1063/1.4764856 en
dc.subject Quantum wells en
dc.subject Band gap en
dc.subject Annealing en
dc.subject Multiple quantum wells en
dc.subject Chemical interdiffusion en
dc.title SiNx-induced intermixing in AlInGaAs/InP quantum well through interdiffusion of group III atoms en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Kevin Thomas, Tyndall National Institute, University College Cork, Cork, Ireland +353-21-490-3000 Email:kevin.thomas@tyndall.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.contributor.funder Higher Education Authority
dc.contributor.funder Science Foundation Ireland
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Applied Physics en
dc.internal.IRISemailaddress kevin.thomas@tyndall.ie en
dc.identifier.articleid 93109
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Strategic Research Cluster/07/SRC/I1173/IE/SRC PiFAS: Photonics - Integration From Atoms to Systems (PiFAS)/


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement