Design of novel visible light active photocatalyst materials: Surface modified TiO2

Show simple item record

dc.contributor.author Nolan, Michael
dc.contributor.author Iwaszuk, Anna
dc.contributor.author Lucid, Aoife K.
dc.contributor.author Carey, John J.
dc.contributor.author Fronzi, Marco
dc.date.accessioned 2017-11-01T13:05:42Z
dc.date.available 2017-11-01T13:05:42Z
dc.date.issued 2016-02-02
dc.identifier.citation Nolan, M., Iwaszuk, A., Lucid, A. K., Carey, J. J. and Fronzi, M. (2016) 'Design of Novel Visible Light Active Photocatalyst Materials: Surface Modified TiO2', Advanced Materials, 28(27), pp. 5425-5446. doi: 10.1002/adma.201504894 en
dc.identifier.volume 28 en
dc.identifier.startpage 5425 en
dc.identifier.endpage 5446 en
dc.identifier.issn 0935-9648
dc.identifier.uri http://hdl.handle.net/10468/4939
dc.identifier.doi 10.1002/adma.201504894
dc.description.abstract Work on the design of new TiO2 based photocatalysts is described. The key concept is the formation of composite structures through the modification of anatase and rutile TiO2 with molecular-sized nanoclusters of metal oxides. Density functional theory (DFT) level simulations are compared with experimental work synthesizing and characterizing surface modified TiO2. DFT calculations are used to show that nanoclusters of metal oxides such as TiO2, SnO/SnO2, PbO/PbO2, ZnO and CuO are stable when adsorbed at rutile and anatase surfaces, and can lead to a significant red shift in the absorption edge which will induce visible light absorption; this is the first requirement for a useful photocatalyst. The origin of the red shift and the fate of excited electrons and holes are determined. For p-block metal oxides the oxidation state of Sn and Pb can be used to modify the magnitude of the red shift and its mechanism. Comparisons of recent experimental studies of surface modified TiO2 that validate our DFT simulations are described. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with a correct choice of nanocluster modified can be applied to other reactions. en
dc.description.sponsorship European Commission (European Commission through the COST Action CM1104 “Reducible Metal Oxides, Structure and Function”); Partnership for Advanced Computing in Europe AISBL, (PRACE (RI-261557, RI-283493 and RI-312763) (Distributed European Computing Initiative (DECI)); Science Foundation Ireland and Higher Education Authority (Irish Centre for High End Computing) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Wiley en
dc.rights © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the peer reviewed version of the following article: Nolan, M. et al. (2016) 'Design of Novel Visible Light Active Photocatalyst Materials: Surface Modified TiO2', Advanced Materials, 28(27), which has been published in final form at http://dx.doi.org/10.1002/adma.201504894. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. en
dc.subject Photocatalysis en
dc.subject TiO2 en
dc.subject Density functional theory en
dc.subject Surface modification en
dc.subject Nanoclusters en
dc.subject Red shift en
dc.subject Photoexcitation en
dc.subject Adsorption en
dc.subject Oxidation en
dc.subject Holes en
dc.subject Electrons en
dc.subject SnO en
dc.subject PbO; en
dc.subject NiO en
dc.subject CuO en
dc.subject Fe2O3 en
dc.subject UV-vis en
dc.subject XPS en
dc.subject Valence band en
dc.subject Photocatalyst materials en
dc.subject Photoexcitation en
dc.subject Surface modification en
dc.subject Valence bands en
dc.title Design of novel visible light active photocatalyst materials: Surface modified TiO2 en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2017-11-01T12:45:02Z
dc.description.version Accepted Version en
dc.internal.rssid 360754911
dc.internal.wokid WOS:000379973600006
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Higher Education Authority en
dc.contributor.funder European Commission en
dc.contributor.funder Partnership for Advanced Computing in Europe AISBL en
dc.contributor.funder European Cooperation in Science and Technology
dc.description.status Peer reviewed en
dc.identifier.journaltitle Advanced Materials, Chemical Vapor Deposition en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/09/SIRG/I1620/IE/EMOIN: Engineering Metal Oxide Interfaces For Renewable Energy Photocatalysis/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement