Reactivity of metal oxide nanocluster modified rutile and anatase TiO2: Oxygen vacancy formation and CO2 interaction

The CORA service is operating as normal. For general information on remote access to UCC Library services and collections during the University closure, please visit the main library website at https://libguides.ucc.ie

Show simple item record

dc.contributor.author Fronzi, Marco
dc.contributor.author Daly, William
dc.contributor.author Nolan, Michael
dc.date.accessioned 2017-11-01T14:34:13Z
dc.date.available 2017-11-01T14:34:13Z
dc.date.issued 2015-12-02
dc.identifier.citation Fronzi, M., Daly, W. and Nolan, M. (2016) 'Reactivity of metal oxide nanocluster modified rutile and anatase TiO2: Oxygen vacancy formation and CO2 interaction', Applied Catalysis A: General, 521(Supplement C), pp. 240-249. doi: 10.1016/j.apcata.2015.11.038 en
dc.identifier.volume 521 en
dc.identifier.startpage 240 en
dc.identifier.endpage 249 en
dc.identifier.issn 0926-860X
dc.identifier.uri http://hdl.handle.net/10468/4940
dc.identifier.doi 10.1016/j.apcata.2015.11.038
dc.description.abstract The reduction of CO2 to fuels is an active research topic with much interest in using solar radiation and photocatalysts to transform CO2 into higher value chemicals. However, to date there are no photocatalysts known that can use solar radiation to efficiently reduce CO2. One particularly difficult problem is activating CO2 due to its high stability. In this paper we use density functional theory simulations to study novel surface modified TiO2 composites, based on modifying rutile and anatase TiO2 with molecular-sized metal oxide nanoclusters of SnO, ZrO2 and CeO2 and the interaction between CO2 and nanocluster-modified TiO2. We show that reduction of the supported nanocluster is favourable which then provides reduced cations and sites for CO2 adsorption. The atomic structures and energies of different adsorption configurations of CO2 on the reduced modified TiO2 composites are studied. Generally on reduced SnO and CeO2 nanoclusters, the interaction of CO2 is weak producing adsorbed carbonates. On reduced ZrO2, we find a stronger interaction with CO2 and carbonate formation. The role of the energies of oxygen vacancy formation in CO2 adsorption is important because if reduction is too favourable, the interaction with CO2 is not so favourable. We do find an adsorption configuration of CO2 at reduced CeO2 where a CO bond breaks, releasing CO and filling the oxygen vacancy site in the supported ceria nanocluster. These initial results for the interaction of CO2 at surface modified TiO2 provide important insights for future work on CO2 reduction using novel materials. en
dc.description.sponsorship European Commission (COST Action CM1104 “Reducible Metal Oxides, Structure and Function); Science Foundation Ireland and Higher Education Authority (Irish Centre for High End Computing) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Elsevier en
dc.relation.uri http://www.sciencedirect.com/science/article/pii/S0926860X15302659
dc.rights © 2015 Elsevier B.V. This manuscript version is made available under the CC BY-NC-ND 4.0 license.5 en
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ en
dc.subject Photocatalysis en
dc.subject TiO en
dc.subject Surface modification en
dc.subject Density functional theory en
dc.subject Oxygen vacancy en
dc.subject CO en
dc.subject Adsorption en
dc.title Reactivity of metal oxide nanocluster modified rutile and anatase TiO2: Oxygen vacancy formation and CO2 interaction en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted for 24 months after publication by request of the publisher. en
dc.check.date 2017-12-02
dc.date.updated 2017-11-01T14:25:13Z
dc.description.version Accepted Version en
dc.internal.rssid 360754915
dc.internal.wokid WOS:000379277900033
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder European Commission en
dc.contributor.funder Higher Education Authority en
dc.contributor.funder European Cooperation in Science and Technology en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Applied Catalysis A-General en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2015 Elsevier B.V. This manuscript version is made available under the CC BY-NC-ND 4.0 license.5 Except where otherwise noted, this item's license is described as © 2015 Elsevier B.V. This manuscript version is made available under the CC BY-NC-ND 4.0 license.5
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement