First-principles analysis of the stability of water on oxidised and reduced CuO(111) surfaces

Show simple item record

dc.contributor.author Fronzi, Marco
dc.contributor.author Nolan, Michael
dc.date.accessioned 2017-12-18T12:51:42Z
dc.date.available 2017-12-18T12:51:42Z
dc.date.issued 2017-12-15
dc.identifier.citation Fronzi, M. and Nolan, M. (2017) 'First-principles analysis of the stability of water on oxidised and reduced CuO(111) surfaces', RSC Advances, 7(89), pp. 56721-56731. doi: 10.1039/C7RA11854F en
dc.identifier.volume 7 en
dc.identifier.issued 89 en
dc.identifier.startpage 56721 en
dc.identifier.endpage 56731 en
dc.identifier.issn 2046-2069
dc.identifier.uri http://hdl.handle.net/10468/5186
dc.identifier.doi 10.1039/C7RA11854F
dc.description.abstract We use first-principles density functional theory calculations including the Hubbard + U correction (PBE + U) on Cu-3d states to investigate the interaction of water with a CuO(111) surface. We compute adsorption energies and the stability of different water coverages, with a particular focus on the interaction of water with oxygen vacancy sites, and how vacancy stabilization occurs. We study the energetics, geometry and electronic structure of relevant configurations, finding that there are only small changes to the local geometry around the water adsorption site(s) and the electronic properties. The inclusion of van der Waals interactions has no significant impact on the stability of water on CuO(111). We extend the analysis to include realistic environmental conditions within the ab initio atomistic thermodynamics framework, which allows us to assess the stability of the water/copper-oxide system as a function of ambient conditions, and focus on three important surface processes: water adsorption/desorption on the stoichiometric surface, conditions for dissociation, and oxygen vacancy stabilization. en
dc.description.sponsorship National Natural Science Foundation of China (No. 51323011); European Commission (through the COST Action CM1104 “Reducible Metal Oxides, Structure and Function”) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Royal Society of Chemistry en
dc.rights © The Royal Society of Chemistry 2017. This article is licensed under a Creative Commons Attribution 3.0 Unported License en
dc.rights.uri http://creativecommons.org/licenses/by/3.0/ en
dc.subject Copper oxides en
dc.subject Density functional theory en
dc.subject Oxygen vacancy sites en
dc.subject Water adsorption en
dc.subject Oxygen vacancy stabilization en
dc.title First-principles analysis of the stability of water on oxidised and reduced CuO(111) surfaces en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2017-12-18T12:42:39Z
dc.description.version Published Version en
dc.internal.rssid 419943527
dc.contributor.funder National Natural Science Foundation of China en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder European Commission en
dc.contributor.funder European Cooperation in Science and Technology en
dc.description.status Peer reviewed en
dc.identifier.journaltitle RSC Advances en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

© The Royal Society of Chemistry 2017. This article is licensed under a Creative Commons Attribution 3.0 Unported License Except where otherwise noted, this item's license is described as © The Royal Society of Chemistry 2017. This article is licensed under a Creative Commons Attribution 3.0 Unported License
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement