Enhanced oxygen vacancy formation in ceria (111) and (110) surfaces doped with divalent cations

Show simple item record

dc.contributor.author Nolan, Michael
dc.date.accessioned 2017-12-18T15:25:28Z
dc.date.available 2017-12-18T15:25:28Z
dc.date.issued 2011-05-20
dc.identifier.citation Nolan, M. (2011) 'Enhanced oxygen vacancy formation in ceria (111) and (110) surfaces doped with divalent cations', Journal of Materials Chemistry, 21(25), pp. 9160-9168. doi: 10.1039/c1jm11238d en
dc.identifier.volume 21 en
dc.identifier.startpage 9160 en
dc.identifier.endpage 9168 en
dc.identifier.issn 0959-9428
dc.identifier.uri http://hdl.handle.net/10468/5189
dc.identifier.doi 10.1039/c1jm11238d
dc.description.abstract With increasing interest in new catalytic materials based on doping of cerium dioxide with other metal cations, it is necessary to have an atomic level understanding of the factors that impact on the structural and electronic properties of doped ceria as well as its reactivity. We present in this paper simulations of the ceria (111) and (110) surfaces doped with divalent cations Pd and Ni using density functional theory (DFT) corrected for on-site Coulomb interactions (DFT + U) and hybrid DFT (using the screened exchange HSE06 functional). Structural distortions due to doping are strong in both surfaces and the most stable structure for both dopants arises through compensation of the dopant + 2 valence through oxygen vacancy formation. Both dopants also lower the formation energy of the active oxygen vacancy in each surface, confirming the potential for these dopants to be used in ceria based materials for catalysis or solid oxide fuel cells, where the oxygen vacancy formation energy is important. When comparing DFT + U and hybrid DFT, although the qualitative descriptions provided by both DFT approaches are similar, we do find that the energetics of oxygen vacancy formation are quantitatively different and the importance of this point is discussed. en
dc.description.sponsorship Science Foundation Ireland and Higher Education Authority (Irish Centre for High End Computing) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Royal Society of Chemistry en
dc.rights © The Royal Society of Chemistry 2011. This is the accepted manuscript version of an article published in Journal of Materials Chemistry. The version of record is available at http://dx.doi.org/10.1039/C1JM11238D en
dc.subject Density functional theory en
dc.subject Augmented-wave method en
dc.subject Co oxidation en
dc.subject Storage capacity en
dc.subject Carbon-monoxide en
dc.subject Ceria en
dc.subject CeO2 en
dc.subject Catalysts en
dc.subject Adsorption en
dc.subject NO en
dc.subject CeO2(111) en
dc.subject Reduction en
dc.title Enhanced oxygen vacancy formation in ceria (111) and (110) surfaces doped with divalent cations en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2017-12-18T15:19:16Z
dc.description.version Accepted Version en
dc.internal.rssid 348783296
dc.internal.wokid WOS:000291611600033
dc.contributor.funder Science Foundation Ireland
dc.contributor.funder Higher Education Authority
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Materials Chemistry en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/09/SIRG/I1620/IE/EMOIN: Engineering Metal Oxide Interfaces For Renewable Energy Photocatalysis/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement