Molecular metal oxide cluster-surface modified titanium (IV) dioxide photocatalysts

Show simple item record

dc.contributor.author Nolan, Michael
dc.contributor.author Iwaszuk, Anna
dc.contributor.author Tada, Hiroaki
dc.date.accessioned 2017-12-19T14:41:26Z
dc.date.available 2017-12-19T14:41:26Z
dc.date.issued 2012-01
dc.identifier.citation Nolan, M., Iwaszuk, A. and Tada, H. (2012) 'Molecular metal oxide cluster-surface modified titanium (IV) dioxide photocatalysts', Australian Journal of Chemistry, 65(6), pp. 624-632. doi: 10.1071/CH11451 en
dc.identifier.volume 65 en
dc.identifier.startpage 624 en
dc.identifier.endpage 632 en
dc.identifier.issn 0004-9425
dc.identifier.uri http://hdl.handle.net/10468/5197
dc.identifier.doi 10.1071/CH11451
dc.description.abstract The surface modification of TiO2 with molecular sized metal oxide clusters has recently been shown to be a promising approach for providing TiO2 with visible-light activity and/or improved UV activity. This short review summarizes the effects of the surface modification of TiO2 with the oxides of iron and tin selected from d- and p-blocks, respectively, on the photocatalytic activity. Fe(acac)(3) and [Sn(acac)(2)]Cl-2 chemisorption on the TiO2 surface occurs by ligand-exchange and ion-exchange, respectively. Taking advantage of the strong adsorption, we formed extremely small metal oxide clusters on TiO2 by the chemisorption-calcination cycle (CCC) technique with their loading amount strictly controlled. The iron oxide surface modification of P-25 (anatase/rutile = 4: 1, w/w, Degussa) gives rise to a high level of visible-light activity and a concomitant increase in the UV-light activity for the degradation of model organic pollutants. On the other hand, only the UV-light activity is increased by the tin oxide surface modification of ST-01 (anatase, Ishihara Sangyo). This striking difference can be rationalized on the basis of the material characterization and DFT calculations, which show that FeOx surface modification of rutile leads to visible-light activity, while SnO2-modified anatase enhances only the UV-light activity. We propose the mechanisms behind the FeOx and SnO2 surface modification, where the surface-to-bulk and bulk-to-surface interfacial electron transfer are taken into account in the former and the latter, respectively. en
dc.description.abstract Research Front (Open Access)
dc.description.sponsorship Science Foundation Ireland and Higher Education Authority (Irish Centre for High End Computing) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher CSIRO Publishing en
dc.rights © CSIRO 2012. en
dc.subject Bilayer-type photocatalyst en
dc.subject Visible-light photocatalysis en
dc.subject TiO2 photocatalysis en
dc.subject Band-gap en
dc.subject Semiconductor en
dc.subject Irradiation en
dc.subject Transition en
dc.subject Particles en
dc.subject Anatase en
dc.subject Design en
dc.subject Adsorption en
dc.subject Chemisorption en
dc.subject Degradation en
dc.subject Density functional theory en
dc.subject Ion exchange en
dc.subject Iron oxides en
dc.subject Loading en
dc.subject Metallic compounds en
dc.subject Organic conductors en
dc.subject Oxide minerals en
dc.subject Photocatalysis en
dc.subject Photocatalysts en
dc.subject Surfaces en
dc.subject Tin en
dc.subject Tin oxides en
dc.subject Titanium en
dc.title Molecular metal oxide cluster-surface modified titanium (IV) dioxide photocatalysts en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2017-12-19T12:54:50Z
dc.description.version Published Version en
dc.internal.rssid 160956727
dc.internal.wokid 000305505800010
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Higher Education Authority en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Australian Journal Of Chemistry en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/09/SIRG/I1620/IE/EMOIN: Engineering Metal Oxide Interfaces For Renewable Energy Photocatalysis/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement