Full text restriction information:Access to this article is restricted until 24 months after publication by request of the publisher.
Restriction lift date:2020-01-03
Citation:Armant, V., De Cauwer, M. Brown, K. N. and O'Sullivan, B. (2018) 'Semi-online task assignment policies for workload consolidation in cloud computing systems', Future Generation Computer Systems, 82, pp. 89-103. doi:10.1016/j.future.2017.12.035
Satisfying on-demand access to cloud computing infrastructures under quality-of-service constraints while minimising the wastage of resources is an important challenge in data centre resource management. In this paper we tackle this challenge in a semi-online workload management system allocating tasks with uncertain duration to physical servers. Our semi-online framework, based on a bin packing approach, allows us to gather information on incoming tasks during a short time window before deciding on their assignments. Our contributions are as follows: (i) we propose a formal framework capturing the semi-online consolidation problem; (ii) we propose a new dynamic and real-time allocation algorithm based on the incremental merging of bins; and (iii) an adaptation of standard bin packing heuristics with a local search algorithm for the semi-online context considered here. We provide a systematic study of the impact of varying time-period size and varying the degrees of uncertainty on the duration of incoming tasks. The policies are compared in terms of solution quality and solving time on a data-set extracted from a real-world cluster trace. Our results show that, around periods of high demand, our best policy saves up to 40% of the resources compared to the other polices, and is robust to uncertainty in the task durations. Finally, we show that small increases in the allowable time window allows a significant improvement, but that larger time windows do not necessarily improve resource usage for real world data sets.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement