Rutile TiO2 inverse opal anodes for Li-ion batteries with long cycle life, high-rate capability and high structural stability

Show simple item record

dc.contributor.author McNulty, David
dc.contributor.author Carroll, Elaine
dc.contributor.author O'Dwyer, Colm
dc.date.accessioned 2018-02-19T15:21:33Z
dc.date.available 2018-02-19T15:21:33Z
dc.date.issued 2017-02-14
dc.identifier.citation McNulty, D., Carroll, E. and O'Dwyer, C. (2017) 'Rutile TiO2 Inverse Opal Anodes for Li-Ion Batteries with Long Cycle Life, High-Rate Capability, and High Structural Stability', Advanced Energy Materials, 7(12), 1602291 (8pp). doi: 10.1002/aenm.201602291 en
dc.identifier.volume 7 en
dc.identifier.startpage 1602291-1 en
dc.identifier.endpage 1602291-8 en
dc.identifier.issn 1614-6840
dc.identifier.uri http://hdl.handle.net/10468/5481
dc.identifier.doi 10.1002/aenm.201602291
dc.description.abstract Rutile TiO2 inverse opals provide long cycle life and impressive structural stability when tested as anode materials for Li-ion batteries. The capacity retention of TiO2 inverse opals (IOs) is greater than previously reported values for other rutile TiO2 nanomaterials, and the cycled crystalline phase and material interconnectivity is maintained over thousands of cycles. Consequently, this paper offers insight into the importance of optimizing the relationship between the structure and morphology on improving electrochemical performance of this abundant and low environmental impact material. TiO2 IOs show gradual capacity fading over 1000 and 5000 cycles, when cycled at specific currents of 75 and 450 mA g−1, respectively, while maintaining a high capacity and a stable overall cell voltage. TiO2 IOs achieve a reversible capacity of ≈170 and 140 mA h g−1 after the 100th and 1000th cycles, respectively, at a specific current of 75 mA g−1, corresponding to a capacity retention of ≈82.4%. The structural stability of the 3D IO phase from pristine rutile TiO2 to the conductive orthorhombic Li0.5TiO2 is remarkable and maintains its structural integrity. Image analysis conclusively shows that volumetric swelling is accommodated into the predefined pore space, and the IO periodicity remains constant and does not degrade over 5000 cycles. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Wiley en
dc.relation.uri http://onlinelibrary.wiley.com/doi/10.1002/aenm.201602291/full
dc.rights © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the peer reviewed version of the following article: D. McNulty, E. Carroll, C. O'Dwyer, ‘Rutile TiO2 Inverse Opal Anodes for Li-Ion Batteries with Long Cycle Life, High-Rate Capability, and High Structural Stability’, Adv. Energy Mater. 2017, 7, 1602291, which has been published in final form at http://dx.doi.org/10.1002/aenm.201602291. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. en
dc.subject Li-ion batteries en
dc.subject Lithium ion batteries en
dc.subject Nanomaterials en
dc.subject TiO2 nanomaterials en
dc.subject TiO2 inverse opals en
dc.subject Energy storage en
dc.title Rutile TiO2 inverse opal anodes for Li-ion batteries with long cycle life, high-rate capability and high structural stability en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Colm O'Dwyer, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: c.odwyer@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2018-02-19T08:51:37Z
dc.description.version Accepted Version en
dc.internal.rssid 400214304
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Advanced Energy Materials en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress c.odwyer@ucc.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Technology and Innovation Development Award (TIDA)/13/TIDA/E2761/IE/LiONSKIN - Moldable Li-ion battery outer skin for electronic devices/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement