Transcriptional response to lactic acid stress in the hybrid yeast Zygosaccharomyces parabailii

Show simple item record

dc.contributor.author Ortiz-Merino, Raúl A.
dc.contributor.author Kuanyshev, Nurzhan
dc.contributor.author Byrne, Kevin P.
dc.contributor.author Varela, Javier A.
dc.contributor.author Morrissey, John P.
dc.contributor.author Porro, Danilo
dc.contributor.author Wolfe, Kenneth H.
dc.contributor.author Branduardi, Paola
dc.date.accessioned 2018-02-20T11:29:59Z
dc.date.available 2018-02-20T11:29:59Z
dc.date.issued 2017-12-21
dc.identifier.citation Ortiz-Merino, R. A., Kuanyshev, N., Byrne, K. P., Varela, J. A., Morrissey, J. P., Porro, D., Wolfe, K. H. and Branduardi, P. (2017) 'Transcriptional response to lactic acid stress in the hybrid yeast Zygosaccharomyces parabailii', Applied and Environmental Microbiology.[In Press] DOI: 10.1128/aem.02294-17 en
dc.identifier.issn 0099-2240
dc.identifier.uri http://hdl.handle.net/10468/5487
dc.identifier.doi 10.1128/aem.02294-17
dc.description.abstract Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH, and a fermentative metabolism with a fast growth rate. Here we used RNA-seq to analyze Z. parabailii's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than in control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/2, previously described as lactic acid-responsive in Saccharomyces cerevisiae. Furthermore, formate dehydrogenase (FDH) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii as compared to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production.Importance Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression in conditions of interest, and relating gene expression patterns to protein functions. However, hybrid organisms present a challenge to the standard use of mRNA sequencing (RNA-seq) to study transcriptional responses to stress, because their genomes contain two similar copies of almost every gene. Here we used stringent mapping methods and a high-quality genome sequence to study the transcriptional response to lactic acid stress in Zygosaccharomyces parabailii ATCC60483, a natural interspecies hybrid yeast that contains two complete subgenomes that are approximately 7% divergent in sequence. Beyond the insights we gained into lactic acid tolerance in this study, the methods we developed will be broadly applicable to other yeast hybrid strains. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Society for Microbiology en
dc.relation.uri http://aem.asm.org/content/early/2017/12/18/AEM.02294-17.abstract
dc.rights © 2017 Ortiz-Merino et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. en
dc.rights.uri https://creativecommons.org/licenses/by/4.0/ en
dc.subject Zygosaccharomyces parabailii en
dc.subject Hybrid yeast en
dc.subject Lactic acid stress en
dc.title Transcriptional response to lactic acid stress in the hybrid yeast Zygosaccharomyces parabailii en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother John Morrissey, Microbiology, University College Cork, Cork, Ireland. +353-21-490-3000 Email: J.Morrissey@ucc.ie en
dc.internal.availability Full text available en
dc.description.version Accepted Version en
dc.contributor.funder FP7 People: Marie-Curie Actions
dc.description.status Peer reviewed en
dc.identifier.journaltitle Applied and Environmental Microbiology en
dc.internal.bibliocheck No Volume/Issue Number etc 20.02.18. Check for Published Version GC en
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP3::PEOPLE/606795/EU/Yeast Cell Factories: Training Researchers to Apply Modern Post-Genomic Methods In Yeast Biotechnology/YEASTCELL en


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2017 Ortiz-Merino et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. Except where otherwise noted, this item's license is described as © 2017 Ortiz-Merino et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement