GaN nanowire Schottky barrier diodes

Show simple item record Sabui, Gourab Zubialevich, Vitaly Z. White, Mary Pampili, Pietro Parbrook, Peter J. McLaren, Mathew Arredondo-Arechavala, Miryam Shen, Z. John 2018-03-20T11:03:53Z 2018-03-20T11:03:53Z 2017-03-21
dc.identifier.citation Sabui, G., Zubialevich, V. Z., White, M., Pampili, P., Parbrook, P. J., McLaren, M., Arredondo-Arechavala, M. and Shen, Z. J. (2017) 'GaN nanowire Schottky barrier diodes', IEEE Transactions on Electron Devices, 64(5), pp. 2283-2290. doi:10.1109/TED.2017.2679727 en
dc.identifier.volume 64 en
dc.identifier.issued 5 en
dc.identifier.startpage 2283 en
dc.identifier.endpage 2290 en
dc.identifier.issn 0018-9383
dc.identifier.doi 10.1109/TED.2017.2679727
dc.description.abstract A new concept of vertical gallium nitride (GaN) Schottky barrier diode based on nanowire (NW) structures and the principle of dielectric REduced SURface Field (RESURF) is proposed in this paper. High-threading dislocation density in GaN epitaxy grown on foreign substrates has hindered the development and commercialization of vertical GaN power devices. The proposed NW structure, previously explored for LEDs offers an opportunity to reduce defect density and fabricate low cost vertical GaN power devices on silicon (Si) substrates. In this paper, we investigate the static characteristics of high-voltage GaN NW Schottky diodes using 3-D TCAD device simulation. The NW architecture theoretically achieves blocking voltages upward of 700 V with very low specific on-resistance. Two different methods of device fabrication are discussed. Preliminary experimental results are reported on device samples fabricated using one of the proposed methods. The fabricated Schottky diodes exhibit a breakdown voltage of around 100 V and no signs of current collapse. Although more work is needed to further explore the nano-GaN concept, the preliminary results indicate that superior tradeoff between the breakdown voltage and specific on-resistance can be achieved, all on a vertical architecture and a foreign substrate. The proposed NW approach has the potential to deliver low cost reliable GaN power devices, circumventing the limitations of today's high electron mobility transistors (HEMTs) technology and vertical GaN on GaN devices. en
dc.description.sponsorship National Science Foundation (Grant EECS-1407540)
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) en
dc.rights © 2017, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. en
dc.subject Gallium nitride en
dc.subject Substrates en
dc.subject Silicon en
dc.subject Schottky diode en
dc.subject Epitaxial growth en
dc.subject Fabrication en
dc.subject Schottky barriers en
dc.subject GaN en
dc.subject Nanowire en
dc.subject NW en
dc.subject Power semiconductor devices en
dc.subject Wide bandgap en
dc.title GaN nanowire Schottky barrier diodes en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Peter James Parbrook, Electrical & Electronic Engineering, University College Cork, Cork, Ireland. +353-21-490-3000 Email: en
dc.internal.availability Full text available en 2018-03-12T10:02:39Z
dc.description.version Accepted Version en
dc.internal.rssid 429271290
dc.contributor.funder National Science Foundation
dc.contributor.funder Science Foundation Ireland
dc.description.status Peer reviewed en
dc.identifier.journaltitle IEEE Transactions on Electron Devices en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress en
dc.relation.project EECS-1407540

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement