Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations

Show simple item record

dc.contributor.author Elliott, Simon D.
dc.contributor.author Dey, Gangotri
dc.contributor.author Maimaiti, Yasheng
dc.date.accessioned 2018-04-09T18:42:01Z
dc.date.available 2018-04-09T18:42:01Z
dc.date.issued 2017-02-03
dc.identifier.citation Elliott, S. D., Dey, G.; Maimaiti, Y. (2017) 'Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations', Journal of Chemical Physics, 146(5), 052822 (11pp). doi:10.1063/1.4975085 en
dc.identifier.volume 146 en
dc.identifier.issued 5 en
dc.identifier.issn 0021-9606
dc.identifier.issn 1089-7690
dc.identifier.uri http://hdl.handle.net/10468/5750
dc.identifier.doi 10.1063/1.4975085
dc.description.abstract Reaction cycles for the atomic layer deposition (ALD) of metals are presented, based on the incomplete data that exist about their chemical mechanisms, particularly from density functional theory (DFT) calculations. ALD requires self-limiting adsorption of each precursor, which results from exhaustion of adsorbates from previous ALD pulses and possibly from inactivation of the substrate through adsorption itself. Where the latter reaction does not take place, an “abbreviated cycle” still gives self-limiting ALD, but at a much reduced rate of deposition. Here, for example, ALD growth rates are estimated for abbreviated cycles in H2-based ALD of metals. A wide variety of other processes for the ALD of metals are also outlined and then classified according to which a reagent supplies electrons for reduction of the metal. Detailed results on computing the mechanism of copper ALD by transmetallation are summarized and shown to be consistent with experimental growth rates. Potential routes to the ALD of other transition metals by using complexes of non-innocent diazadienyl ligands as metal sources are also evaluated using DFT. en
dc.description.sponsorship Enterprise Ireland (Project No. ALD300) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.rights © 2017, the Authors. Published by AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the authors and AIP Publishing. The following article appeared in Elliott, S. D., Dey, G.; Maimaiti, Y., Journal of Chemical Physics, 146(5), 052822 (11pp), and may be found at http://dx.doi.org/10.1063/1.4975085 en
dc.subject Adsorbed layers en
dc.subject Adsorption en
dc.subject Atomic layer deposition en
dc.subject Copper en
dc.subject Density functional theory en
dc.title Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Simon Elliott, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: simon.elliott@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2018-04-09T17:23:12Z
dc.description.version Published Version en
dc.internal.rssid 433190547
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Enterprise Ireland en
dc.contributor.funder Higher Education Authority en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Chemical Physics en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress simon.elliott@tyndall.ie en
dc.identifier.articleid 052822
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/09/IN.1/I2628/IE/ALDesign - Process design for atomic layer deposition/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Strategic Research Cluster/07/SRC/I1172/IE/SRC FORME: Functional Oxides and Related Materials for Electronics/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement