CO2 and water activation on ceria nanocluster modified TiO2 rutile (110)

Show simple item record

dc.contributor.author Rhatigan, Stephen
dc.contributor.author Nolan, Michael
dc.date.accessioned 2018-05-09T08:51:28Z
dc.date.available 2018-05-09T08:51:28Z
dc.date.issued 2018
dc.identifier.citation Rhatigan, S. and Nolan, M. (2018) 'CO2 and water activation on ceria nanocluster modified TiO2 rutile (110)', Journal of Materials Chemistry A, In Press, doi: 10.1039/C8TA01270A en
dc.identifier.startpage 1 en
dc.identifier.endpage 14 en
dc.identifier.issn 2050-7488
dc.identifier.uri http://hdl.handle.net/10468/6042
dc.identifier.doi 10.1039/C8TA01270A
dc.description.abstract Surface modification of TiO2 with metal oxide nanoclusters is a strategy for the development of new photocatalyst materials. We have studied modification of TiO2 rutile (110) with ceria nanoclusters using density functional theory corrected for on-site Coulomb interactions (DFT+U). We focus on the impact of surface modification on key properties governing the performance of photocatalysts, including light absorption, photoexcited charge carrier separation, reducibility and surface reactivity. Our results show that adsorption of the CeO2 nanoclusters, with compositions Ce5O10 and Ce6O12, is favourable at the rutile (110) surface and that the nanocluster–surface composites favour non-stoichiometry in the adsorbed ceria so that reduced Ce ions will be present in the ground state. The presence of reduced Ce ions and low coordinated O sites in the nanocluster lead to the emergence of energy states in the energy gap of the TiO2 host, which potentially enhance the visible light response. We show, through an examination of oxygen vacancy formation, that the composite systems are reducible with moderate energy costs. Photoexcited electrons and holes localize on Ce and O sites of the supported nanoclusters. The interaction of CO2 and H2O is favourable at multiple sites of the reduced CeOx–TiO2 composite surfaces. CO2 adsorbs and activates, while H2O spontaneously dissociates at oxygen vacancy sites. en
dc.description.sponsorship European Cooperation in Science and Technology (COST Action CM1104 “Reducible Metal Oxides, Structure and Function”) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Royal Society of Chemistry (RSC) en
dc.relation.uri http://dx.doi.org/10.1039/C8TA01270A
dc.rights © The Royal Society of Chemistry 2018 en
dc.subject Nanoclusters en
dc.subject TiO2 en
dc.subject Energy states en
dc.subject Energy gap en
dc.subject Absorption en
dc.title CO2 and water activation on ceria nanocluster modified TiO2 rutile (110) en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 12 months after publication by request of the publisher. en
dc.check.date 2019-04-27
dc.date.updated 2018-05-08T15:31:17Z
dc.description.version Accepted Version en
dc.internal.rssid 436857391
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Horizon 2020 en
dc.contributor.funder European Cooperation in Science and Technology en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Materials Chemistry A en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.internal.bibliocheck In Press May 2018. Update citation details, start page end page, volume issue. en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/09/SIRG/I1620/IE/EMOIN: Engineering Metal Oxide Interfaces For Renewable Energy Photocatalysis/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/ en
dc.relation.project info:eu-repo/grantAgreement/EC/H2020::ERA-NET-Cofund/685451/EU/ERA-NET for materials research and innovation/M-ERA.NET 2 en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement