Alkaline earth metal oxide nanocluster modification of rutile TiO2 (110) promotes water activation and CO2 chemisorption

Show simple item record

dc.contributor.author Nolan, Michael
dc.date.accessioned 2018-05-09T09:03:16Z
dc.date.available 2018-05-09T09:03:16Z
dc.date.issued 2018-05-01
dc.identifier.citation Nolan, M. (2018) 'Alkaline earth metal oxide nanocluster modification of rutile TiO2 (110) promotes water activation and CO2 chemisorption', Journal of Materials Chemistry A, In Press, doi: 10.1039/C8TA01789A en
dc.identifier.startpage 1 en
dc.identifier.endpage 16 en
dc.identifier.issn 2050-7488
dc.identifier.uri http://hdl.handle.net/10468/6043
dc.identifier.doi 10.1039/C8TA01789A
dc.description.abstract Metal oxide photocatalysts are widely studied for applications in solar driven environmental remediation, antimicrobial activity, hydrogen production and CO2 reduction to fuels. Common requirements for each technology include absorption of visible light, reduced charge carrier recombination and the ability to activate the initial molecule be it a pollutant, water or CO2. The leading photocatalyst is some form of TiO2. A significant amount of work has been undertaken to modifying TiO2 to induce visible light absorption. The structure and composition of the catalyst should facilitate separation of electrons and holes and having active sites on the catalyst is important to promote the initial adsorption and activation of molecules of interest. In this paper we present a first principles density functional theory (DFT) study of the modification of rutile TiO2 (110) with nanoclusters of the alkaline earth metal oxides (MgO, Ca, BaO) and we focus on the effect of surface modification on the key catalyst properties. The modification of rutile TiO2 with CaO and BaO induces a predicted red shift in light absorption. In all cases, photoexcited electrons and holes localise on oxygen in the nanocluster and surface Ti sites, thus enhancing charge separation. The presence of these non-bulk alkaline earth oxide nanoclusters provides highly active sites for water and CO2 adsorption. On MgO-rutile, water adsorbs molecularly and overcomes a barrier of only 0.36 eV for dissociation whereby hydroxyls are stabilised. On CaO- and BaO-modified rutile water adsorbs dissociatively. We attribute this to the high lying O 2p states in the alkaline earth oxide modifiers which are available to interact with water, as well as the non-bulk like geometry around the active site. Upon adsorption of CO2 the preferred binding mode is as a tridentate carbonate-like species, as characterised by geometry and vibrational modes. The carbonate is bound by up to 4 eV. Thus these heterostructures can be interesting for CO2 capture, helping alleviate the problem of CO2 emissions. en
dc.description.sponsorship European Cooperation in Science and Technology (COST ACTION CM1104) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Royal Society of Chemistry (RSC) en
dc.relation.uri http://dx.doi.org/10.1039/C8TA01789A
dc.rights © The Royal Society of Chemistry 2018 en
dc.subject Photocatalysts en
dc.subject Metal oxide photocatalysts en
dc.subject TiO2 en
dc.subject Density functional theory (DFT) en
dc.subject CO2 emissions en
dc.subject Adsorption en
dc.title Alkaline earth metal oxide nanocluster modification of rutile TiO2 (110) promotes water activation and CO2 chemisorption en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 12 months after publication by request of the publisher en
dc.check.date 2019-05-01
dc.date.updated 2018-05-08T15:43:55Z
dc.description.version Accepted Version en
dc.internal.rssid 436857404
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Horizon 2020 en
dc.contributor.funder European Cooperation in Science and Technology en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Materials Chemistry A en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.internal.bibliocheck In Press May 2018. Update citation, page numbers, add volume, issue number. etc en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/ en
dc.relation.project info:eu-repo/grantAgreement/EC/H2020::ERA-NET-Cofund/685451/EU/ERA-NET for materials research and innovation/M-ERA.NET 2 en
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP4::INFRA/312763/EU/PRACE - Third Implementation Phase Project/PRACE-3IP en
dc.relation.project info:eu-repo/grantAgreement/EC/H2020::RIA/653838/EU/PRACE 4th Implementation Phase Project/PRACE-4IP en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement