Full text restriction information:Access to this article is restricted until 12 months after publication by request of the publisher
Restriction lift date:2018-09-17
Citation:Stafeev, S. S., Kotlyar, V. V., Nalimov, A. G., Kotlyar, M. V. and O’Faolain, L. (2017) 'Subwavelength gratings for polarization conversion and focusing of laser light', Photonics and Nanostructures - Fundamentals and Applications, 27, pp. 32-41. doi:10.1016/j.photonics.2017.09.001
We review thin micro-optics components with nanostructured microreliefs intended to control the polarization and phase of laser light. These components include transmission and reflection subwavelength diffraction gratings characterized by spatially −varying groove directions and fill factors, with the microrelief period and depth remaining approximately unchanged. In the visible spectrum, the microrelief features may vary in size from dozens to hundreds of nanometers. Segmented diffractive micropolarizers for linear to radial/azimuthal polarization conversion and subwavelength microlenses for tightly focusing the laser light are discussed in detail. Examples of particular micropolarizers and microlenses fabricated in amorphous silicon films are also given.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement