Mixed-linker UiO-66: structure-property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations

Show simple item record

dc.contributor.author Taddei, Marco
dc.contributor.author Tiana, Davide
dc.contributor.author Casati, Nicola
dc.contributor.author van Bokhoven, Jeroen A.
dc.contributor.author Smit, Berend
dc.contributor.author Ranocchiari, Marco
dc.date.accessioned 2018-07-06T14:10:11Z
dc.date.available 2018-07-06T14:10:11Z
dc.date.issued 2016-12-06
dc.identifier.citation Taddei, M., Tiana, D., Casati, N., van Bokhoven, J. A., Smit, B. and Ranocchiari, M. (2017) 'Mixed-linker UiO-66: structure-property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations', Physical Chemistry Chemical Physics, 19(2), pp. 1551-1559. doi: 10.1039/c6cp07801j en
dc.identifier.volume 19 en
dc.identifier.startpage 1551 en
dc.identifier.endpage 1559 en
dc.identifier.issn 1463-9076
dc.identifier.uri http://hdl.handle.net/10468/6428
dc.identifier.doi 10.1039/c6cp07801j
dc.description.abstract The use of mixed-linker metal-organic frameworks (MIXMOFs) is one of the most effective strategies to modulate the physical-chemical properties of MOFs without affecting the overall crystal structure. In many instances, MIXMOFs have been recognized as solid solutions, with random distribution of ligands, in agreement with the empirical rule known as Vegard's law. In this work, we have undertaken a study combining high-resolution powder X-ray diffraction (HR-PXRD) and density functional theory (DFT) calculations with the aim of understanding the reasons why UiO-66-based amino-and bromofunctionalized MIXMOFs (MIXUiO-66) undergo cell expansion obeying Vegard's law and how this behaviour is related to their physical-chemical properties. DFT calculations predict that the unit cell in amino-functionalized UiO-66 experiences only minor expansion as a result of steric effects, whereas major modification to the electronic features of the framework leads to weaker metal-linker interaction and consequently to the loss of stability at higher degrees of functionalization. For bromo-functionalized UiO-66, steric repulsion due to the size of bromine yields a large cell expansion, but the electronic features remain very similar to pristine UiO-66, preserving the stability of the framework upon functionalization. MIXUiO-66 obtained by either direct synthesis or by post-synthetic exchange shows Vegard-like behaviour, suggesting that both preparation methods yield solid solutions, but the thermal stability and the textural properties of the post-synthetic exchanged materials do not display a clear dependence on the chemical composition, as observed for the MOFs obtained by direct synthesis. en
dc.description.sponsorship Paul Scherrer Institut (Energy System Integration (ESI) platform); Centro svizzero di calcolo scientifico, CSCS (Swiss National Supercomputing Centre, Project no. s611); National Center of Competence in Research (NCCR) ‘‘Materials’ Revolution: Computational Design and Discovery of Novel Materials (MARVEL); en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Royal Society of Chemistry (RSC) en
dc.relation.uri http://dx.doi.org/10.1039/C6CP07801J
dc.rights © the Owner Societies 2017. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence en
dc.rights.uri https://creativecommons.org/licenses/by/3.0/ en
dc.subject Metal-organic frameworks en
dc.subject Zeolitic imidazolate frameworks en
dc.subject Porous coordination polymers en
dc.subject Post-synthetic modification en
dc.subject Band-gap en
dc.subject Adsorption properties en
dc.subject Postsynthetic ligand en
dc.subject NMR-spectroscopy en
dc.subject Solid-solutions en
dc.subject Vegards law en
dc.title Mixed-linker UiO-66: structure-property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Davide Tiana, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: davide.tiana@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2018-07-03T11:04:08Z
dc.description.version Published Version en
dc.internal.rssid 391817010
dc.internal.wokid WOS:000392399400067
dc.contributor.funder Paul Scherrer Institut en
dc.contributor.funder National Center of Competence in Research Materials’ Revolution: Computational Design and Discovery of Novel Materials en
dc.contributor.funder Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung en
dc.contributor.funder H2020 European Research Council en
dc.contributor.funder Centro Svizzero di Calcolo Scientifico, CSCS
dc.description.status Peer reviewed en
dc.identifier.journaltitle Physical Chemistry Chemical Physics en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress davide.tiana@ucc.ie en
dc.relation.project info:eu-repo/grantAgreement/EC/H2020::ERC::ERC-ADG/666983/EU/The Materials Genome in Action/MaGic en


Files in this item

This item appears in the following Collection(s)

Show simple item record

© the Owner Societies 2017. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence Except where otherwise noted, this item's license is described as © the Owner Societies 2017. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement