Mixed-linker UiO-66: structure-property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations

Loading...
Thumbnail Image
Files
c6cp07801j.pdf(2.67 MB)
Published version
c6cp07801j1.pdf(1.57 MB)
Supplementary information
Date
2016-12-06
Authors
Taddei, Marco
Tiana, Davide
Casati, Nicola
van Bokhoven, Jeroen A.
Smit, Berend
Ranocchiari, Marco
Journal Title
Journal ISSN
Volume Title
Publisher
Royal Society of Chemistry (RSC)
Published Version
Research Projects
Organizational Units
Journal Issue
Abstract
The use of mixed-linker metal-organic frameworks (MIXMOFs) is one of the most effective strategies to modulate the physical-chemical properties of MOFs without affecting the overall crystal structure. In many instances, MIXMOFs have been recognized as solid solutions, with random distribution of ligands, in agreement with the empirical rule known as Vegard's law. In this work, we have undertaken a study combining high-resolution powder X-ray diffraction (HR-PXRD) and density functional theory (DFT) calculations with the aim of understanding the reasons why UiO-66-based amino-and bromofunctionalized MIXMOFs (MIXUiO-66) undergo cell expansion obeying Vegard's law and how this behaviour is related to their physical-chemical properties. DFT calculations predict that the unit cell in amino-functionalized UiO-66 experiences only minor expansion as a result of steric effects, whereas major modification to the electronic features of the framework leads to weaker metal-linker interaction and consequently to the loss of stability at higher degrees of functionalization. For bromo-functionalized UiO-66, steric repulsion due to the size of bromine yields a large cell expansion, but the electronic features remain very similar to pristine UiO-66, preserving the stability of the framework upon functionalization. MIXUiO-66 obtained by either direct synthesis or by post-synthetic exchange shows Vegard-like behaviour, suggesting that both preparation methods yield solid solutions, but the thermal stability and the textural properties of the post-synthetic exchanged materials do not display a clear dependence on the chemical composition, as observed for the MOFs obtained by direct synthesis.
Description
Keywords
Metal-organic frameworks , Zeolitic imidazolate frameworks , Porous coordination polymers , Post-synthetic modification , Band-gap , Adsorption properties , Postsynthetic ligand , NMR-spectroscopy , Solid-solutions , Vegards law
Citation
Taddei, M., Tiana, D., Casati, N., van Bokhoven, J. A., Smit, B. and Ranocchiari, M. (2017) 'Mixed-linker UiO-66: structure-property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations', Physical Chemistry Chemical Physics, 19(2), pp. 1551-1559. doi: 10.1039/c6cp07801j