Hand tracking and gesture recognition using lensless smart sensors

Show simple item record

dc.contributor.author Abraham, Lizy
dc.contributor.author Urro, Andrea
dc.contributor.author Normani, Niccolò
dc.contributor.author Wilk, Mariusz P.
dc.contributor.author Walsh, Michael
dc.contributor.author O'Flynn, Brendan
dc.date.accessioned 2018-08-29T13:45:45Z
dc.date.available 2018-08-29T13:45:45Z
dc.date.issued 2018-08-28
dc.identifier.citation Abraham, L., Urru, A., Normani, N., Wilk, M., Walsh, M. and O’Flynn, B. (2018) 'Hand Tracking and Gesture Recognition Using Lensless Smart Sensors', Sensors, 18(9), 2834 (24 pp). doi: 10.3390/s18092834 en
dc.identifier.volume 18 en
dc.identifier.issued 9 en
dc.identifier.startpage 2834-1 en
dc.identifier.endpage 2834-24 en
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10468/6654
dc.identifier.doi 10.3390/s18092834
dc.description.abstract The Lensless Smart Sensor (LSS) developed by Rambus, Inc. is a low-power, low-cost visual sensing technology that captures information-rich optical data in a tiny form factor using a novel approach to optical sensing. The spiral gratings of LSS diffractive grating, coupled with sophisticated computational algorithms, allow point tracking down to millimeter-level accuracy. This work is focused on developing novel algorithms for the detection of multiple points and thereby enabling hand tracking and gesture recognition using the LSS. The algorithms are formulated based on geometrical and mathematical constraints around the placement of infrared light-emitting diodes (LEDs) on the hand. The developed techniques dynamically adapt the recognition and orientation of the hand and associated gestures. A detailed accuracy analysis for both hand tracking and gesture classification as a function of LED positions is conducted to validate the performance of the system. Our results indicate that the technology is a promising approach, as the current state-of-the-art focuses on human motion tracking that requires highly complex and expensive systems. A wearable, low-power, low-cost system could make a significant impact in this field, as it does not require complex hardware or additional sensors on the tracked segments. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher MDPI en
dc.relation.uri http://www.mdpi.com/1424-8220/18/9/2834
dc.rights © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). en
dc.rights.uri http://creativecommons.org/licenses/by/4.0/ en
dc.subject LSS en
dc.subject Infrared LEDs en
dc.subject Calibration en
dc.subject Tracking en
dc.subject Gestures en
dc.subject RMSE en
dc.subject Repeatability en
dc.subject Temporal Noise en
dc.subject Latency en
dc.subject Lensless Smart Sensor (LSS) en
dc.subject Light-emitting diodes (LEDs) en
dc.title Hand tracking and gesture recognition using lensless smart sensors en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Brendan O'Flynn, Tyndall Microsystems, University College Cork, Cork, Ireland. +353-21-490-3000 Email: brendan.oflynn@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2018-08-29T13:38:14Z
dc.description.version Published Version en
dc.internal.rssid 451414612
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder European Regional Development Fund en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Sensors en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress brendan.oflynn@tyndall.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Research Centres/13/RC/2077/IE/CONNECT: The Centre for Future Networks & Communications/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Except where otherwise noted, this item's license is described as © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement