Carbon nanocages with nanographene shell for high-rate lithium ion batteries

The CORA service is operating as normal. For general information on remote access to UCC Library services and collections during the University closure, please visit the main library website at https://libguides.ucc.ie

Show simple item record

dc.contributor.author Wang, Kaixue
dc.contributor.author Li, Zhonglai
dc.contributor.author Wang, Yonggang
dc.contributor.author Li, Haimei
dc.contributor.author Chen, Jiesheng
dc.contributor.author Holmes, Justin D.
dc.date.accessioned 2018-08-30T11:16:00Z
dc.date.available 2018-08-30T11:16:00Z
dc.date.issued 2010-09-24
dc.identifier.citation Wang, K., Li, Z., Wang, Y., Liu, H., Chen, J., Holmes, J. and Zhou, H. (2010) 'Carbon nanocages with nanographene shell for high-rate lithium ion batteries', Journal of Materials Chemistry, 20(43), pp. 9748-9753. doi: 10.1039/C0JM01704C en
dc.identifier.volume 20 en
dc.identifier.startpage 9748 en
dc.identifier.endpage 9753 en
dc.identifier.issn 0959-9428
dc.identifier.uri http://hdl.handle.net/10468/6689
dc.identifier.doi 10.1039/C0JM01704C
dc.description.abstract Carbon nanocages with a nanographene shell have been prepared by catalytic decomposition of p-xylene on a MgO supported Co and Mo catalyst in supercritical CO2 at a pressure of 10.34 MPa and temperatures ranging from 650 to 750 °C. The electrochemical performance of these carbon nanocages as anodes for lithium ion batteries has been evaluated by galvanostatic cycling. The carbon nanocages prepared at a temperature of 750 °C exhibited relatively high reversible capacities, superior rate performance and excellent cycling life. The advanced performance of the carbon nanocages prepared at 750 °C is ascribed to their unique structural features: (1) nanographene shells and the good inter-cage contact ensuring fast electron transportation, (2) a porous network formed by fine pores in the carbon shell and the void space among the cages facilitating the penetration of the electrolyte and ions within the electrode, (3) thin carbon shells shortening the diffusion distance of Li ions, and (4) the high specific surface area providing a large number of active sites for charge-transfer reactions. These carbon nanocages are promising candidates for application in lithium ion batteries. en
dc.description.sponsorship National Natural Science Foundation of China (20731003, 20901050); Shanghai Jiao Tong University (Shanghai Pujiang Program (09PJ1405700); en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Royal Society of Chemistry (RSC) en
dc.relation.uri http://pubs.rsc.org/en/content/articlepdf/2010/jm/c0jm01704c
dc.rights © The Royal Society of Chemistry 2010 en
dc.subject Lithium en
dc.subject Aromatic hydrocarbons en
dc.subject Charge transfer en
dc.subject Electrochemical electrodes en
dc.subject Ions en
dc.subject Lithium alloys en
dc.subject Lithium compounds en
dc.subject Shells (structures) en
dc.subject Xylene en
dc.subject Active site en
dc.subject Carbon nanocages en
dc.subject Carbon shells en
dc.subject Catalytic decomposition en
dc.subject Charge-transfer reactions en
dc.subject Cycling life en
dc.subject Diffusion distance en
dc.subject Electrochemical performance en
dc.subject Fast electrons en
dc.subject Galvanostatic cycling en
dc.subject High rate en
dc.subject High specific surface area en
dc.subject Lithium-ion battery en
dc.subject P-xylene en
dc.subject Porous networks en
dc.subject Rate performance en
dc.subject Reversible capacity en
dc.subject Structural feature en
dc.subject Supercritical CO en
dc.subject Void space en
dc.title Carbon nanocages with nanographene shell for high-rate lithium ion batteries en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Justin D. Holmes, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: j.holmes@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2018-08-06T15:23:50Z
dc.description.version Accepted Version en
dc.internal.rssid 59430085
dc.contributor.funder National Natural Science Foundation of China en
dc.contributor.funder Shanghai Jiao Tong University en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Materials Chemistry en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress j.holmes@ucc.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Research Frontiers Programme (RFP)/08/RFP/MTR1239/IE/Mesoporous Metal Oxides for Photovoltaic and Electrochromic Applications/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Strategic Research Cluster/07/SRC/I1172/IE/SRC FORME: Functional Oxides and Related Materials for Electronics/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement