Fabrication of ultra-dense sub-10 nm in-plane Si nanowire arrays by using a novel block copolymer method: optical properties

Show simple item record

dc.contributor.author Ghoshal, Tandra
dc.contributor.author Ntaras, Christos
dc.contributor.author O'Connell, John
dc.contributor.author Shaw, Matthew T.
dc.contributor.author Holmes, Justin D.
dc.contributor.author Avgeropoulos, Apostolos
dc.contributor.author Morris, Michael A.
dc.date.accessioned 2018-09-07T15:05:43Z
dc.date.available 2018-09-07T15:05:43Z
dc.date.issued 2015-12-22
dc.identifier.citation Ghoshal, T., Ntaras, C., O'Connell, J., Shaw, M. T., Holmes, J. D., Avgeropoulos, A. and Morris, M. A. (2016) 'Fabrication of ultra-dense sub-10 nm in-plane Si nanowire arrays by using a novel block copolymer method: optical properties', Nanoscale, 8(4), pp. 2177-2187. doi: 10.1039/C5NR07085F en
dc.identifier.volume 8 en
dc.identifier.issued 4 en
dc.identifier.startpage 2177 en
dc.identifier.endpage 2187 en
dc.identifier.issn 2040-3364
dc.identifier.uri http://hdl.handle.net/10468/6741
dc.identifier.doi 10.1039/C5NR07085F
dc.description.abstract The use of a low-χ, symmetric block copolymer as an alternative to the high-χ systems currently being translated towards industrial silicon chip manufacture has been demonstrated. Here, the methodology for generating on-chip, etch resistant masks and subsequent pattern transfer to the substrate using ultra-small dimension, lamellar, microphase separated polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer (BCP) is described. Well-controlled films of a perpendicularly oriented lamellar pattern with a domain size of ∼8 nm were achieved through amplification of an effective interaction parameter (χeff) of the BCP system. The self-assembled films were used as ‘templates’ for the generation of inorganic oxides nanowire arrays through selective metal ion inclusion and subsequent processing. Inclusion is a significant challenge because the lamellar systems have less chemical and mechanical robustness than the cylinder forming materials. The oxide nanowires of uniform diameter (∼8 nm) were isolated and their structure mimics the original BCP nanopatterns. We demonstrate that these lamellar phase iron oxide nanowire arrays could be used as a resist mask to fabricate densely packed, identical ordered, good fidelity silicon nanowire arrays on the substrate. Possible applications of the materials prepared are discussed, in particular, in the area of photonics and photoluminescence where the properties are found to be similar to those of surface-oxidized silicon nanocrystals and porous silicon. en
dc.description.sponsorship Semiconductor Research Corporation (SRC grant 2013-OJ-2444) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Royal Society of Chemistry (RSC) en
dc.relation.uri http://pubs.rsc.org/en/content/articlepdf/2016/nr/c5nr07085f
dc.rights © The Royal Society of Chemistry 2016 en
dc.subject Block copolymers en
dc.subject Effective interaction parameters en
dc.subject Iron oxide nanowires en
dc.subject Lamellar patterns en
dc.subject Mechanical robustness en
dc.subject Microphase separated en
dc.subject Self assembled films en
dc.subject Si nanowire arrays en
dc.subject Silicon nanowire arrays en
dc.subject Ethylene en
dc.subject Metal ions en
dc.subject Metals en
dc.subject Nanowires en
dc.subject Optical properties en
dc.subject Polyethylene oxides en
dc.subject Porous silicon en
dc.subject Silicon en
dc.subject Silicon oxides en
dc.title Fabrication of ultra-dense sub-10 nm in-plane Si nanowire arrays by using a novel block copolymer method: optical properties en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Justin D. Holmes, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: j.holmes@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2018-08-07T12:44:14Z
dc.description.version Accepted Version en
dc.internal.rssid 342661412
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Semiconductor Research Corporation en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Nanoscale en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress j.holmes@ucc.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2278/IE/Advanced Materials and BioEngineering Research Centre (AMBER)/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement