Oxide removal and stabilization of bismuth thin films through chemically bound thiol layers

Show simple item record

dc.contributor.author Alessio Verni, Giuseppe
dc.contributor.author Long, Brenda
dc.contributor.author Gity, Farzan
dc.contributor.author Lanius, Martin
dc.contributor.author Schüffelgen, Peter
dc.contributor.author Mussler, Gregor
dc.contributor.author Grützmacher, Detlev
dc.contributor.author Greer, James C.
dc.contributor.author Holmes, Justin D.
dc.date.accessioned 2018-11-15T16:25:01Z
dc.date.available 2018-11-15T16:25:01Z
dc.date.issued 2018-09-27
dc.identifier.citation Alessio Verni, G., Long, B., Gity, F., Lanius, M., Schüffelgen, P., Mussler, G., Grützmacher, D., Greer, J. and Holmes, J. D. (2018) 'Oxide removal and stabilization of bismuth thin films through chemically bound thiol layers', RSC Advances, 8(58), pp. 33368-33373. doi: 10.1039/c8ra06840b en
dc.identifier.volume 8 en
dc.identifier.issued 58 en
dc.identifier.startpage 33368 en
dc.identifier.endpage 33373 en
dc.identifier.issn 2046-2069
dc.identifier.uri http://hdl.handle.net/10468/7121
dc.identifier.doi 10.1039/c8ra06840b
dc.description.abstract Bismuth has been identified as a material of interest for electronic applications due to its extremely high electron mobility and quantum confinement effects observed at nanoscale dimensions. However, it is also the case that Bi nanostructures are readily oxidised in ambient air, necessitating additional capping steps to prevent surface re-oxidation, thus limiting the processing potential of this material. This article describes an oxide removal and surface stabilization method performed on molecular beam epitaxy (MBE) grown bismuth thin-films using ambient air wet-chemistry. Alkanethiol molecules were used to dissolve the readily formed bismuth oxides through a catalytic reaction; the bare surface was then reacted with the free thiols to form an organic layer which showed resistance to complete reoxidation for up to 10 days. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Royal Society of Chemistry en
dc.relation.uri https://pubs.rsc.org/en/Content/ArticleLanding/2018/RA/C8RA06840B
dc.rights © The Royal Society of Chemistry 2018. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. en
dc.rights.uri https://creativecommons.org/licenses/by-nc/3.0/ en
dc.subject Bismuth compounds en
dc.subject Catalysis en
dc.subject Molecular beam epitaxy en
dc.subject Oxide films en
dc.subject Stabilization en
dc.subject Surface reactions en
dc.subject Thin films en
dc.subject Alkanethiol molecules en
dc.subject Bismuth thin films en
dc.subject Catalytic reactions en
dc.subject Electronic application en
dc.subject High electron mobility en
dc.subject Nanoscale dimensions en
dc.subject Quantum confinement effects en
dc.subject Surface stabilization en
dc.title Oxide removal and stabilization of bismuth thin films through chemically bound thiol layers en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Justin D. Holmes, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: j.holmes@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2018-11-15T11:44:40Z
dc.description.version Published Version en
dc.internal.rssid 461957861
dc.description.status Peer reviewed en
dc.identifier.journaltitle RSC Advances en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress j.holmes@ucc.ie en
dc.internal.IRISemailaddress brenda.long@ucc.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

© The Royal Society of Chemistry 2018. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Except where otherwise noted, this item's license is described as © The Royal Society of Chemistry 2018. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement