Thermally stable external cavity laser based on silicon nitride periodic nanostructures

Show simple item record Iadanza, Simone Bakoz, Andrei P. Panettieri, D. Tedesco, A. Giannino, G. Grande, M. O'Faolain, Liam 2018-11-30T11:28:30Z 2018-11-30T11:28:30Z 2018-09-27
dc.identifier.citation Iadanza, S., Bakoz, A., Panettieri, D., Tedesco, A., Giannino, G., Grande, M. and O’Faolain, L. (2018) ‘Thermally stable external cavity aser Bbased on silicon nitride periodic nanostructures’, 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania. 1-5 July, Tu.C5.4 (4pp). doi:10.1109/ICTON.2018.8473622 en
dc.identifier.startpage 1 en
dc.identifier.endpage 4 en
dc.identifier.issn 2161-2064
dc.identifier.doi 10.1109/ICTON.2018.8473622
dc.description.abstract In this paper we demonstrate a thermally stable silicon nitride external cavity (SiN EC) laser based on a 250 μm sized Reflective Semiconductor Optical Amplifier (RSOA) butt-coupled to a series of Si 3 N 4 Bragg gratings acting as wavelength selective reflectors. The laser shows power outputs over 3 mW, a very low lasing threshold of 12 mA and with a typical Side-Mode Suppression Ratio of 45 dB. In this configuration a mode-hop free lasing regime over a range of 47 mA has been achieved (from 15 mA to 62 mA). Thermal stability of the lasing wavelength at temperatures up to 80°C is demonstrated. Further on, experimental results on a passive chip based on new 1D photonic crystal cavities are shown to have higher Q-Factors. This paves the way to avoiding thermal wavelength drifts and unlocks the possibility for these devices to be integrated in Dense WDM and optical-interconnect technologies, where transceivers must operate over a wide temperature range without active cooling. en
dc.description.sponsorship Science Foundation Ireland (SFI16/ERCS/3838); European Research Council (Starting Grant 337508) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) en
dc.relation.ispartof 20th International Conference on Transparent Optical Networks (ICTON) 2018
dc.rights © 2018, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. en
dc.subject Silicon compounds en
dc.subject Cavity resonators en
dc.subject Laser modes en
dc.subject Thermal stability en
dc.subject Gratings en
dc.subject Laser stability en
dc.title Thermally stable external cavity laser based on silicon nitride periodic nanostructures en
dc.type Conference item en
dc.internal.authorcontactother Liam O’Faolain, Tyndall National Institute, University College Cork, Cork, Ireland. T: +353-21-490-3000 E: en
dc.internal.availability Full text available en
dc.description.version Accepted Version en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder European Research Council en
dc.contributor.funder Horizon 2020 en
dc.description.status Peer reviewed en
dc.identifier.articleid Tu.C5.4
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2276/IE/I-PIC Irish Photonic Integration Research Centre/ en
dc.relation.project info:eu-repo/grantAgreement/EC/H2020::RIA/688516/EU/CmOs Solutions for Mid-board Integrated transceivers with breakthrough Connectivity at ultra-low Cost/COSMICC en

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement