Inspiratory pressure-generating capacity is preserved during ventilatory and non-ventilatory behaviours in young dystrophic mdx mice despite profound diaphragm muscle weakness

Loading...
Thumbnail Image
Files
8669.pdf(1.1 MB)
Accepted version
Date
2018-12-20
Authors
Burns, David P.
Murphy, Kevin H.
Lucking Eric F.
O'Halloran, Ken D.
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Published Version
Research Projects
Organizational Units
Journal Issue
Abstract
Diaphragm dysfunction is recognized in the mdx mouse model of muscular dystrophy, however there is a paucity of information concerning the neural control of dystrophic respiratory muscles. In young adult (8 weeks of age) male wild‐type and mdx mice, we assessed ventilatory capacity, neural activation of the diaphragm and external intercostal (EIC) muscles and inspiratory pressure‐generating capacity during ventilatory and non‐ventilatory behaviours. We hypothesized that respiratory muscle weakness is associated with impaired peak inspiratory pressure‐generating capacity in mdx mice. Ventilatory responsiveness to hypercapnic hypoxia was determined in conscious mice by whole‐body plethysmography. Diaphragm isometric and isotonic contractile properties were determined ex vivo. In anaesthetized mice, thoracic oesophageal pressure, and diaphragm and EIC electromyogram (EMG) activities were recorded during baseline conditions and sustained tracheal occlusion for 30–40s. Despite substantial diaphragm weakness, mdx mice retain the capacity to enhance ventilation during hypercapnic hypoxia. Peak volume‐ and flow‐related measures were also maintained in anaesthetized, vagotomized mdx mice. Peak inspiratory pressure was remarkably well preserved during chemoactivated breathing, augmented breaths, and maximal sustained efforts during airway obstruction in mdx mice. Diaphragm and EIC EMG activities were lower during airway obstruction in mdx compared with wild‐type mice. We conclude that ventilatory capacity is preserved in young mdx mice. Despite profound respiratory muscle weakness and lower diaphragm and EIC EMG activities during high demand in mdx mice, peak inspiratory pressure is preserved, revealing adequate compensation in support of respiratory system performance, at least early in dystrophic disease. We suggest that a progressive loss of compensation during advancing disease, combined with diaphragm dysfunction, underpins the development of respiratory system morbidity in dystrophic diseases.
Description
Keywords
Breathing , Diaphragm , DMD , EMG , Intercostal , mdx , Oesophageal pressure , Duchenne muscular dystrophy (DMD) , Respiratory muscle weaknes
Citation
Burns, D. P., Murphy, K. H., Lucking, E. F. and O'Halloran, K. D. 'Inspiratory pressure-generating capacity is preserved during ventilatory and non-ventilatory behaviours in young dystrophic mdx mice despite profound diaphragm muscle weakness', The Journal of Physiology, In Press, doi: 10.1113/JP277443
Copyright
© 2018 The Physiological Society. Published by Wiley. This is the peer reviewed version of the following article: (2019), Inspiratory pressure‐generating capacity is preserved during ventilatory and non‐ventilatory behaviours in young dystrophic mdx mice despite profound diaphragm muscle weakness. J Physiol. Accepted Author Manuscript, which has been published in final form at https://doi.org/10.1113/JP277443. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.