Impact of disorder on the optoelectronic properties of GaNyAs1−x−yBix alloys and heterostructures

Show simple item record Usman, Muhammad Broderick, Christopher A. O'Reilly, Eoin P. 2019-01-15T12:32:04Z 2019-01-15T12:32:04Z 2018-10-09
dc.identifier.citation Usman, M., Broderick, C. A. and O'Reilly, E. P. (2018) 'Impact of disorder on the optoelectronic properties of GaNyAs1−x−yBix alloys and heterostructures', Physical Review Applied, 10(4), 44024 (17pp). doi:10.1103/PhysRevApplied.10.044024 en
dc.identifier.volume 10 en
dc.identifier.issued 4 en
dc.identifier.startpage 1 en
dc.identifier.endpage 17 en
dc.identifier.issn 2331-7019
dc.identifier.doi 10.1103/PhysRevApplied.10.044024
dc.description.abstract We perform a systematic theoretical analysis of the nature and importance of alloy disorder effects on the electronic and optical properties of GaNyAs1−x−yBix alloys and quantum wells (QWs), using large-scale atomistic supercell electronic structure calculations based on the tight-binding method. Using ordered alloy supercell calculations, we also derive and parametrize an extended-basis 14-band k⋅p Hamiltonian for GaNyAs1−x−yBix. Comparison of the results of these models highlights the role played by short-range alloy disorder—associated with substitutional nitrogen (N) and bismuth (Bi) incorporation—in determining the details of the electronic and optical properties. Systematic analysis of large alloy supercells reveals that the respective impacts of N and Bi on the band structure remain largely independent, a robust conclusion that we find to be valid even in the presence of significant alloy disorder where N and Bi atoms share common Ga nearest neighbors. Our calculations reveal that N- (Bi-)related alloy disorder strongly influences the conduction- (valence-)band edge states, leading in QWs to strong carrier localization, as well as inhomogeneous broadening and modification of the conventional selection rules for optical transitions. Our analysis provides detailed insight into key properties and trends in this unusual material system, and enables quantitative evaluation of the potential of GaNyAs1−x−yBix alloys for applications in photonic and photovoltaic devices. en
dc.description.sponsorship Engineering and Physical Sciences Research Council (Project No. EP/K029665/1). en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Physical Society en
dc.rights © 2018 American Physical Society. All rights reserved. en
dc.subject Electronic structure en
dc.subject Optoelectronics en
dc.subject Photonics en
dc.subject Physical Systems en
dc.subject Doped semiconductors en
dc.subject III-V semiconductors en
dc.subject Photovoltaic absorbers en
dc.subject Quantum wells en
dc.subject Techniques en
dc.subject Tight-binding model en
dc.title Impact of disorder on the optoelectronic properties of GaNyAs1−x−yBix alloys and heterostructures en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Eoin O'Reilly, Physics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: en
dc.internal.availability Full text available en 2019-01-15T09:59:29Z
dc.description.version Published Version en
dc.internal.rssid 469618712
dc.contributor.funder Seventh Framework Programme en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Engineering and Physical Sciences Research Council en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Physical Review Applied en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress en
dc.identifier.articleid 044024
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP1::ICT/257974/EU/BIsmide And Nitride Components for High temperature Operation/BIANCHO en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/15/IA/3082/IE/Multiscale Simulation and Analysis of emerging Group IV and III-V Semiconductor Materials and Devices/ en

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement