Pseudospectra of elements of reduced Banach algebras II

Show simple item record

dc.contributor.author Krishnan, Arundhathi
dc.contributor.author Kulkarni, S. H.
dc.date.accessioned 2019-02-04T12:09:42Z
dc.date.available 2019-02-04T12:09:42Z
dc.date.issued 2018
dc.identifier.citation A. Krishnan and S. H. Kulkarni (2018) 'Pseudospectra of elements of reduced Banach algebras II'. Functional Analysis, Approximation and Computation, 10(2), pp. 33-45. en
dc.identifier.volume 10 en
dc.identifier.issued 2 en
dc.identifier.startpage 33 en
dc.identifier.endpage 45 en
dc.identifier.issn 2406-1573
dc.identifier.uri http://hdl.handle.net/10468/7427
dc.description.abstract Let A be a Banach algebra with identity 1 and p ∈ A be a non-trivial idempotent. Then q = 1 − p is also an idempotent. The subalgebras pAp and qAq are Banach algebras, called reduced Banach algebras, with identities p and q respectively. Let x ∈ A be such that pxp = xp, and ε > 0. We examine the relationship between the spectrum of x ∈ A, σ(A, x), and the spectra of pxp ∈ pAp, σ(pAp, pxp) and qxq ∈ qAq, σ(qAq, qxq). Similarly, we examine the relationship betweeen the ε-pseudospectrum of x ∈ A, Λε(A, x) and ε-pseudospectra of pxp ∈ pAp, Λε(pAp, pxp) and of qxq ∈ qAq, Λε(qAq, qxq). en
dc.description.sponsorship Council of Scientific and Industrial Research, CSIR, India (File No: 09/084(0647)/2013-EMR-I) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Univerzitet u Nišu, University of Nis, Serbia en
dc.relation.uri http://journal.pmf.ni.ac.rs/faac/index.php/faac/article/view/158/84
dc.rights © The Authors 2018; © 2018 – Prirodno-matematički fakultet Niš en
dc.subject Banach algebra en
dc.subject Direct sum en
dc.subject Idempotent en
dc.subject Pseudospectrum en
dc.subject Reduced Banach algebra en
dc.subject Spectrum en
dc.title Pseudospectra of elements of reduced Banach algebras II en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Arundhathi Krishnan, School of Mathematical Sciences, University College Cork, Cork, Ireland. +353-21-490-3000 Email: arundhathi.krishnan@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2019-02-04T11:54:15Z
dc.description.version Published Version en
dc.internal.rssid 471843408
dc.contributor.funder Council of Scientific and Industrial Research en
dc.contributor.funder Indian Statistical Institute, Bangalore Centre en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Functional Analysis, Approximation and Computation en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress arundhathi.krishnan@ucc.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement